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Instrumental variable

Z X Y

U

Instrumental variable (IV) is used in presence of latent confounder U.

+ Z is called an instrumental variable if

1. Exclusion restriction: Z has no effect on Y except through X .

I In terms of potential outcome notation, Y (x , z) ≡ Y (x).

2. Exogeneity: Z and U are independent.

I Weak exogeneity: Y (x) ⊥⊥ Z for each level of treatment X .

3. Relevance: Z and X are not independent (faithfulness).
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Validity

1. Exclusion restriction: Z has no effect on Y except through X .

2. Exogeneity: Z and U are independent.

3. Relevance: Z and X are not independent (faithfulness).

+ Only relevance is verifiable (by rejecting the null Z ⊥⊥ X ).

+ Falsification

• Requirements 1 and 2 may imply conditions that can be tested with

data (falsification/specification tests).

• But passing these tests does not prove that Z is a valid instrument.

• One has to argue that Z satisfies these requirements.
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Examples

Z X Y

U

• Encouragement design:

I X : vaccine, Y : risk of flu, Z : random encouragement from

doctor to get vaccine

• Genetic variation (Mendelian randomization):

I X : alcohol consumption, Y : heart disease, Z : polymorphism

related to alcoholic metabolism

• Environmental factor

I X : economic condition, Y : civil conflict, Z : rainfall (Miguel,

Satyanath, and Sergenti, 2004)
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Non-identification

That being said, without making further assumption, the

counterfactual distribution is not identified from the observed data.

+ ACE E[Y |do(X = 1)]− E[Y |do(X = 0)] is unidentified.

Z X Y Z X Y6⇒

+ To proceed, we have to make additional assumptions.

I To relate to problems in geometry, I will focus on the linear structural

equation model (linear SEM).
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Linear SEM

Linear SEM is widely adopted in econometrics.

Z X Y

U

π

α δ
β

Let Z ,X ,U,Y be univariate random variables.

Suppose all variables have zero mean and finite variance.

Y = βX + δU + ηY , X = πZ + αU + ηX .

I Relevance: π 6= 0

I Exogeneity: Z ⊥⊥ U, ηX , ηY .
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IV is a division

Y = βX + δU + ηY , X = πZ + αU + ηX .

I By substituting the equation on X into the equation on Y , we get the

“reduced form”

Y = βπZ + β(αU + ηX ) + ηY ,

X = πZ + αU + ηX .

Now note β(αU + ηX ) + ηY ⊥⊥ Z and αU + ηX ⊥⊥ Z by exogeneity.

+ We can consistently estimate βπ and π, and divide:

β̂ =
β̂π

π̂
=

cov(Y ,Z )/ varZ

cov(X ,Z )/ varZ
=

cov(Y ,Z )

cov(X ,Z )
,

which can be restated as two-stage least squares (2SLS)

• 1st stage: π̂ from X ∼ Z

• 2nd stage: β̂ from Y ∼ π̂Z , where π̂Z is the fitted value of X .
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IV is a division

+ Under π 6= 0 (relevance), it is easy to see that β̂ is consistent and

asymptotically normal.

+ When Z is binary, this is Wald’s estimator

β̂ =
cov(Y ,Z )

cov(X ,Z )
=

E[Y |Z = 1]− E[Y |Z = 0]

E[X |Z = 1]− E[X |Z = 0]
,

which follows from

cov(Y ,Z ) = (E[Y |Z = 1]− E[Y |Z = 0])p(1− p)

for p = EZ .

+ So far we have studied the simplest case dimZ = dimX = 1.
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Perspective from estimating equation

To gain more insights, let us now assume dimZ = dimX = k.

+ Absorbing endogenous errors, the equation on Y ∈ R can be written as

Y = βᵀX + εY , β,X ∈ Rk ,

where σ2 := E(εY )2.

I Given that Z ∈ Rk is exogenous, we have E[εY |Z ] = 0, which yields

the estimating equation

ZT (y − Xβ) = 0,

where Z ,X ∈ Rn×k , y ∈ Rn,β ∈ Rk .

This yields the estimator

β̂ = (ZᵀX )−1Zᵀy ,

which is consistent if (1) E[ZXᵀ] is full-rank (2) Zᵀεy/n→p 0.
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Perspective from estimating equation

+ CLT √
n(β̂ − β)

d⇒ N (0,Σ),

with a sandwich asymptotic covariance

Σ = σ2 E[ZXᵀ]−1 cov(Z )E[ZXᵀ]−ᵀ = σ2 plimn

(
n−1XᵀPZX

)
,

where PZ = Z (ZᵀZ )−1Zᵀ is the projection matrix into the column

space of Z .

I But there could be other ways of forming the estimating equation,

e.g., f (Z )ᵀ(y − Xβ) = 0 for some function f .

I The optimal choice should minimize Σ.

+ Take f (Z ) = X̄ := E[X |Z ] is the optimal choice. That is, the

“instrumented” treatment X .
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Instrumentation

To see that X̄ = E[X |Z ] is the asymptotically optimal exogenous

variable in estimating equation, consider the asymptotic precision

(Σ/σ2)−1 = plimn n
−1XᵀPZX

= E[XZᵀ] cov(Z )−1 E[XZᵀ]−1

= E[X̄Zᵀ] cov(Z )−1 E[X̄Zᵀ]−1 (tower)

= plimn n
−1X̄ᵀPZ X̄ .

I Specializing to Z = X̄ , the above becomes plimn n
−1X̄ᵀX̄ .

+ This is optimal because

n−1X̄ᵀX̄ − n−1X̄ᵀPZ X̄ = n−1X̄ᵀ
(I − PZ )X̄ � 0.

+ To estimating k coefficients, one needs at least k estimating

equations. But one could have l ≥ k instruments.
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Over-identification

Now suppose dimZ = l ≥ k = dimX .

I Exactly-identified: l = k , Over-identified: l > k , Unidentified: l < k.

For Z ∈ Rn×l , J ∈ Rl×k , suppose we form estimating equation

(ZJ)ᵀ(y − Xβ) = 0,

and look for the optimal J that minimizes the asymptotic covariance.

I Similar to the previous, the asymptotic precision

(Σ/σ2)−1 = plimn n
−1X̄PZJX̄ .

In general, however, we cannot find J such that E[X |Z ] = ZJ .

+ Nevertheless, the natural choice is

ZJ = PZ X̄ ⇒ J = (ZᵀZ )−1ZᵀX̄ .

12



Over-identification

With such choice,

(Σ/σ2)−1 = plimn n
−1X̄PPZX̄

X̄

= plimn n
−1X̄ᵀPZX̄

(
X̄ᵀPZ X̄ᵀ)−1

X̄ᵀPZX̄

= plimn n
−1X̄ᵀPZ X̄ ,

where we note PZ is symmetric, idempotent.

+ This choice of J is optimal because

X̄ᵀ
(PZ − PZJ) X̄ � 0.

But X̄ = E[X |Z ] is unknown. Nevertheless, PZX is asymptotically

equivalent to PZ X̄ .
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Generalized 2SLS

Finally, under dimZ = l ≥ k = dimX , the optimal estimating equation is

(PZX )ᵀ(y − Xβ) = 0,

which yields the generalized 2SLS estimator

β̂ = (XᵀPZX )−1XᵀPZy

= [(PZX )ᵀ(PZX )]−1 (PZX )ᵀy ,

where PZX is the fitted value of X from 1st-stage regression.

+ CLT

√
n(β̂ − β)

d⇒ N (0,Σ), Σ = σ2 E[ZXᵀ]−1 cov(Z )E[ZXᵀ]−T .

+ This works because E[X |Z ] is asymptotically independent of the

endogenous error εy , although they are dependent in finite samples!
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Finite sample behavior

+ Because 2SLS is a generalized form of division, its finite sample

behavior is rather erratic, especially when instrument is weak!

Consider again the case of dimZ = dimX = 1

Y = βX + σ1ε1, X = πZ + σ2ε2,

with ε1, ε2 ∼ N (0, 1) with correlation ρ.

We have

β̂ =
zᵀy
zᵀx

=
zᵀ(βx + σ1ε1)

zᵀx
= β + σ1

zᵀε1

zᵀx
.

It follows that

β̂ − β =
σ1zᵀε1

zᵀ(πz + σ2ε2)
.

Letting zᵀz = 1 and writing ε1 = ε3 + ρε2 for ε3 ∼ N (0, 1) independent

of ε2

β̂ − β =
σ1zᵀ(ε3 + ρε2)

π + σ2zᵀε2
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Finite sample behavior

Now, taking conditional expectation with respect to ε2 and noting

zᵀε2 ∼ N (0, 1), we get

E[β̂ − β|ε2] =
ρσ1

σ2

W

W + π/σ2
, W ∼ N (0, 1).

• If ρ = 0, unbiased and reduced to OLS.

• If ρ 6= 0,

• π = 0: 2SLS has non-diminishing bias ρσ1/σ2.

• π 6= 0: E[β̂ − β] does not exist, even though it is asymptotically

unbiased!

I Generalized β̂ only has (l − k) moments in finite samples (Kinal,

1980) in the identified/over-identified case (l ≥ k).

I Poor asymptotic behavior if π ≈ 0, i.e., weak instrument.
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Weak instruments

The asymptotics on β̂ may be far from reality if instrument is weak. One

needs to be cautious of this fact when doing inference on IV.

+ Testing weak instrument

1. Stock and Yogo (2002) based on asymptotic embedding at local

asymptotics π = c/
√
n.

2. Inference on IV after testing for weak instruments (Bi, Kang, and

Taylor, 2020).

+ Weak-instrument robust test (Anderson and Rubin, 1949) for testing

H0 : β = β0.
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Other topics on IV

+ Identification strategies without assuming linear SEM

1. Homogeneity

2. Monotonicity and local average treatment effect (LATE).

+ IV also implies semi-algebraic constraints (e.g., instrument

inequalities) that can be used for falsification and partial identification.
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