A tutorial on Manifold Learning for real data

The Fields Institute Workshop on Manifold and Graph-based learning

Marina Meilă

Department of Statistics University of Washington

19-20 May, 2022

2022-05-18

A tutorial on Manifold Learning for real data The Fields Institute Workshop on Manifold and Graph-based learning

Marina Melli Inserner etherien 19-20 May, 2022

About these course notes

- This is the "handout" version of the course slides.
- In the actual course, most differential geometric concepts are defined informally.
- These notes include more formal definitions for these concepts, to help you ground them in mathematics.
- I have also included some simple but illuminating extra proofs; some proofs are given as exercises for the reader.
- Linear algebra concepts (like SVD, ≻ 0 matrix) or other math/stat/CS concepts used generically in machine learning are not defined.

Outline

What is manifold learning good for?

Manifolds, Coordinate Charts and Smooth Embeddings

- Son-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms
- Metric preserving manifold learning Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning Intuition
 - Estimating the Riemannian metric
- Solution Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

Outline

What is manifold learning good for?

- 2 Manifolds, Coordinate Charts and Smooth Embeddings
- 3 Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms
- Metric preserving manifold learning Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning Intuition
 - Estimating the Riemannian metric
- 5 Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

What is manifold learning good for?

• Principal Component Analysis (PCA). What is it good for?

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

• Preprocessed by Jacob VanderPlas and Grace Telford • n = 675,000 spectra $\times D = 3750$ dimensions

embedding by James McQueen

Molecular configurations

When to do (non-linear) dimension reduction

- n = 698 gray images of faces in
 D = 64 × 64 dimensions
- head moves up/down and right/left
- With only two degrees of freedom, the faces define a 2D manifold in the space of all 64 × 64 gray images

Outline

What is manifold learning good for?

Manifolds, Coordinate Charts and Smooth Embeddings

- 3 Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms
- 4 Metric preserving manifold learning Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning Intuition
 - Estimating the Riemannian metric
- 5 Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

Manifold. Basic definitions

- manifold
- chart
- atlas
- d is called intrinsic dimension of \mathcal{M}
- If the original data $p \in \mathbb{R}^D$, call D the ambient dimension.

[—]Manifolds, Coordinate Charts and Smooth Embeddings

Manifold. Basic definitions

Manifold. Mathematical definitions

Definition 1 (Smooth Manifold (?))

- A *d*-dimensional manifold *M* is a topological (Hausdorff) space such that every point has a neighborhood homeomorphic to an open subset of R^d.
- A coordinate chart (U, x) of manifold M is an open set U ⊂ M together with a homeomorphism x : U → V of U onto an open subset V ⊂ ℝ^d = {(x¹,...,x^d) ∈ ℝ^d}.
- A C^{∞} -atlas \mathcal{A} is a collection of charts, $\mathcal{A} \equiv \bigcup_{\alpha \in I} \{(U_{\alpha}, x_{\alpha})\}$ where I is an index set, such that $\mathcal{M} = \bigcup_{\alpha \in I} U_{\alpha}$ and for any $\alpha, \beta \in I$ the corresponding transition map $x_{\beta} \circ x_{\alpha}^{-1} : x_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^{d}$ is continuously differentiable any number of times.
- Notation: $p \in U \longrightarrow x(p) = (x^1(p), ..., x^d(p)).$
- The mappings {x} are not uniquely defined. This is a problem for comparing results of manifold estimation algorithms
- Generally, a manifold needs more than one chart. This is not a severe problem, and can be circumvented as we will see next. For simplicity, we will talk only about a single chart from now on.

Intrinsic dimension. Tangent subspace

[—]Manifolds, Coordinate Charts and Smooth Embeddings

—Intrinsic dimension. Tangent subspace

Intrinsic dimension. Tangent subspace

Intrinsic dimension. Tangent subspace

- Denote by φ : V ⊆ ℝ^d → U ⊆ M the inverse of coordinate chart x. A smooth curve γ on M is defined as the image by φ of a smooth curve γ̃ in V. A smooth curve admits a tangent at every interior point.
- The tangent subspace of M at p ∈ M, denoted T_pM is defined as the set of all tangents at p to smooth curves curves on M that pass through point p.

 $\dim \mathcal{T}_p \mathcal{M} = d$

- If φ : M → R is a scalar function on M, then its gradient at p, denoted ∇f(p), is a vector in T_pM.
- exterior derivative
- geodesic distance

Manifolds, Coordinate Charts and Smooth Embeddings

—Intrinsic dimension. Tangent subspace

Tangents to curves – detail

The Chain Rule $f = h \circ g \Leftrightarrow f(x) = h(g(x))$ where $\phi : (-1, 1) \to U \subset \mathbb{R}^D$, $g : (-1, 1) \to V \subset \mathbb{R}^d$, $h : V \to U$ $\frac{d}{dt}f = dh\frac{d}{dt}g \qquad (1)$ Where $\frac{d}{dt}f \in \mathbb{R}^D$, $\frac{d}{dt}g \in \mathbb{R}^d$, $dh = [\frac{\partial h^i}{\partial x^j}]_{i=1:D}^{j=1:d}$ is the Jacobian of h

(Smooth) Curve $\bar{\gamma} : (-1, 1) \to \mathbb{R}^d$ iff $\bar{\gamma}^j : (-1, 1) \to \mathbb{R}$ are smooth functions, for j = 1 : d. $\bar{\gamma}(t)$ is point on curve at t.

Intrinsic dimension. Tangent subspace

• Smooth curve on \mathcal{M} : $\gamma = \phi \circ \bar{\gamma}, \gamma(t) = \phi(\bar{\gamma}^1(t), \dots \bar{\gamma}^d(t))$

• Hence $\frac{d\gamma}{dt} = d\phi \cdot \frac{d\bar{\gamma}}{dt}$

Manifolds, Coordinate Charts and Smooth Embeddings

—Intrinsic dimension. Tangent subspace

An example, I

- \mathcal{M} is unit sphere in \mathbb{R}^3 , coordinatex x, y, z
- U is top patch of \mathcal{M} . How to map U to $V \subset \mathbb{R}^2$?
 - 1. We find the inverse mapping $\phi: V
 ightarrow U$
 - 2. Let V be a the interior of a circle, coordinates (x^1, x^2) , point $(0, 0, 1) \in U$ maps to $(0.0) \in V$.
 - 3. Let $r^2 = (x^1)^2 + (x^2)^2$, and map it to the arc distance from (0, 0, 1) to p = (x, y, z). Then

$$x = x^{1} \sin r$$

$$y = x^{2} \sin r$$

$$z = 1 - \cos r$$

4. Let's compute the derivatives (by chain rule)

$$\frac{\partial r}{\partial x^1} = \frac{x^1}{r} \qquad \qquad \frac{\partial x}{\partial x^1} = \sin r + \frac{(x^1)^2}{r} \cos r$$
$$\frac{\partial r}{\partial x^2} = \frac{x^2}{r} \qquad \qquad \frac{\partial x}{\partial x^2} = \frac{x^1 x^2}{r} \cos r$$
$$\frac{\partial z}{\partial x^1} = \frac{x^1}{r} \sin r \qquad \qquad \frac{\partial y}{\partial x^1} = \frac{x^1 x^2}{r} \cos r$$
$$\frac{\partial z}{\partial x^2} = \frac{x^2}{r} \sin r \qquad \qquad \frac{\partial y}{\partial x^2} = \sin r + \frac{(x^2)^2}{r} \cos r$$

-Manifolds, Coordinate Charts and Smooth Embeddings

—Intrinsic dimension. Tangent subspace

- Now let $\bar{\gamma}: (-\epsilon, \epsilon) \to V$ be the curve $\bar{\gamma}(t) = [t \ t]^T$. Hence $\frac{d\bar{\gamma}}{dt} = [1 \ 1]^T$
- The tangent vector in p = (0, 0, 1) is $\frac{d\gamma}{dt}(0, 0) = d\phi \frac{d\bar{\gamma}}{dt}$ with coordinates

$$\frac{d\gamma}{dt}(0,0) = \begin{bmatrix} \sin r + \frac{(x^1)^2 + x^1 x^2}{\sin r + \frac{(x^2)^2 + x^1 x^2}{r} \cos r} \\ \sin r + \frac{(x^2)^2 + x^1 x^2}{r} \cos r \\ \sin r \frac{x^1 + x^2}{r} \end{bmatrix}$$
(2)

Embeddings

- One can circumvent using multiple charts by mapping the data into m > d dimensions.
- Let $\phi : \mathcal{M} \to \mathbb{R}^m$ be a smooth function, and let $\mathcal{N} = \phi(\mathcal{M})$.
- ϕ is an embedding if the inverse $\phi^{-1} : \mathcal{N} \to \mathcal{M}$ exists and is differentiable (a diffeormorphism).

- Whitney's Embedding Theorem (?) states that any *d*-dimensional smooth manifold can be embedded into \mathbb{R}^{2d} .
- Hence, if $d \ll D$, very significant dimension reductions can be achieved with a single map $\phi : \mathcal{M} \to \mathbb{R}^m$.
- Manifold learning algorithms aim to construct maps ϕ like the above from finite data sampled from \mathcal{M} .

Manifolds, Coordinate Charts and Smooth Embeddings

Embeddings

Let \mathcal{M}, \mathcal{N} be two manifolds, and $\phi : \mathcal{M} \to \mathcal{N}$ be a C^{∞} (i.e *smooth*) map between them. At each point $p \in \mathcal{M}$, the Jacobian $d\phi_p$ of ϕ at p defines a linear mapping between $T_p\mathcal{M}$, and the tangent subspace to \mathcal{N} at $\phi(p) T_{\phi(p)}\mathcal{N}$.

Definition 2 (Rank of a Smooth Map)

A smooth map $\phi : \mathcal{M} \to \mathcal{N}$ has rank k if the Jacobian $d\phi_p : T_p\mathcal{M} \to T_{\phi(p)}\mathcal{N}$ of the map has rank k for all points $p \in \mathcal{M}$. Then we write rank $(\phi) = k$.

Definition 3 (Embedding)

Let \mathcal{M} and \mathcal{N} be smooth manifolds and let $\phi : \mathcal{M} \to \mathcal{N}$ be a smooth injective map, that is $rank(\phi) = dim(\mathcal{M})$, then ϕ is called an immersion. If \mathcal{M} is homeomorphic to its image under ϕ , then ϕ is an embedding of \mathcal{M} into \mathcal{N} .

Examples of manifolds and coordinate charts

Examples of manifolds and coordinate charts

Not manifolds

- dimension not constant
- unions of manifolds that intersect
- sharp corners (non-smooth)
- many/most neural network embeddings
- manifolds can have border

Outline

What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

Metric preserving manifold learning – Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning Intuition
- Estimating the Riemannian metric
- 5 Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

Non-linear dimension reduction: Three principles

Algorithm given $\mathcal{D} = \{\xi_1, \ldots, \xi_n\}$ from $\mathcal{M} \subset \mathbb{R}^D$, map them by Algorithm f to $\{y_1, \ldots, y_n\} \subset \mathbb{R}^m$ Assumption if points from \mathcal{M} , $n \to \infty$, f is embedding of \mathcal{M} (f "recovers" \mathcal{M} of arbitrary shape).

- Local (weighted) PCA (IPCA)
- Principal Curves and Surfaces (PCS)
- Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...)
- () [Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

- Intrinsic dimension d
 - must be estimated (we assume we know it)
 - sample complexity is exponential in d NONPARAMETRIC
- non-uniform sampling
- volume of \mathcal{M} (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of ${\cal M}$
- curvature
- ESSENTIAL smoothness parameter: the neighborhood radius

(Lecture 3) (upcoming)

(next page)

(Lecture 3)

Non-linear dimension reduction algorithm

Parametric vs. non-parametric

An example of density estimation with data $x_{1:n} \in \mathbb{R}$.

- **(**) Gaussian $N(\mu, \sigma^2)$ parametric.
 - $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\hat{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \hat{\mu})^2$
 - Error $\mu \hat{\mu}$ has mean 0 and standard deviation $\sigma_{\hat{\mu}} = \frac{\sigma}{\sqrt{n}} \propto n^{-1/2}$
 - To increase accuracy $\times 10$, *n* must increase $\times 10^2 = 100$
- Ø Kernel density estimation (KDE), non-parametric

$$p_h(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} \kappa \left(\frac{x_i - \mathbf{x}}{h} \right)$$

- $\kappa = N(0, 1)$ the kernel, h > 0 is the kernel width
- Accuracy for KDE $\propto n^{-2/5}$
- To increase accuracy $\times 10$, *n* must increase $\times 10^{5/2} \approx 316$

	distribution			to decrease err. by 10	
Model	e.g.	shape	error rate	we need samples $ imes$	
Parametric	$N(\mu, \sigma^2))$	fixed	$n^{-1/2}$	$n imes 10^2$	100
Non-parametric	KDE in ${\mathbb R}$	any	$n^{-2/5}$	$n imes 10^{5/2}$	316
	KDE in ℝ ^d	any	$n^{-2/(d+4)}$	$n imes 10^{(d+4)/2}$	1000 (d = 2)
					3163 $(d = 3)$
					10,000 (<i>d</i> = 4)

Neighborhood graphs

- All ML algorithms start with a neighborhood graph over the data points
 - neigh_i denotes the neighbors of ξ_i , and $k_i = | \operatorname{neigh}_i |$.
 - $\Xi_i = [\xi_{i'}]_{i' \in \text{neigh}_i} \in \mathbb{R}^{D \times k_i}$ contains the coordinates of ξ_i 's neighbors
- In the radius-neighbor graph, the neighbors of ξ_i are the points within distance r from ξ_i, i.e. in the ball B_r(ξ_i).
- In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of ξ_i .
- k-nn graph has many computational advantages
 - constant degree k (or k-1)
 - connected for any k > 1
 - more software available
 - but much more difficult to use for consistent estimation of manifolds (see later, and)

neighborhood graph

A (sparse) matrix of distances between neighbors

Non-linear dimension reduction algorithms

Local PCA

Local Principal Components Analysis (LPCA)

Idea Approximate ${\mathcal M}$ with tangent subspaces at a finite number of data points

- **1** Pick a point $\xi_i \in \mathcal{D}$
- **②** Find neigh_i, perform PCA on neigh_i $\cup \{\xi_i\}$ and obtain (affine) subspace with basis $T_i \in \mathbb{R}^{D \times d}$
- **③** Represent $\xi_{i'} \in \operatorname{neigh}_i$ by $y_i = \operatorname{Proj}_{T_i} \xi_{i'}$

$$y_{i'} = T_i^T(\xi_{i'} - \xi_i) \quad \text{new coordinates of } \xi_{i'} \text{ in } \mathcal{T}_{\xi_i} \mathcal{M}$$
(3)

Repeat for a sample of n' < n data points

Local PCA

• For n, n' sufficiently large, \mathcal{M} can be approximated with arbitrary accuracy

So, are we done? Some issues with LPCA

- Point ξ_i may be represented in multiple T_i 's (minor)
- New coordinates y_i are relative to local T_i
- Fine for local operations like regression
- Number of charts depends on extrinsic properties
- Cumbersome for larger scale operations like following a curve on ${\cal M}$
- Biased in noise

Multi-dimensional scaling (MDS)

- (See notes for PCA, Kernel PCA, centering matrix H, MDS for details)
- Problem Given matrix of (squared) distances $D \in \mathbb{R}^{n \times n}$, find a set of *n* points in *d* dimensions $Y = d \times n$ so that

$$D_Y = [||y_i - y_j||^2]_{i,j} \approx D$$

Useful when

- original points are not vectors but we can compute distances (e.g string edit distances, philogenetic distances)
- · original points are in high dimensions
- ullet original distances are geodesic distances on a manifold $\mathcal M$

MDS Algorithm

- Calculate $K = -\frac{1}{2}HDH^T$
- **2** Compute its *d* principal e-vectors/values: $K = V \Sigma^2 V^T$
- $Y = \Sigma V^T$ are new coordinates

The Centering Matrix H

$$H = I - \frac{1}{n} \mathbf{1}_{n \times n}$$

Q: Could MDS be an embedding algorithm? What is different about MDS and upcoming algorithms?

⁻Non-linear dimension reduction algorithms

PCA, Kernel PCA, MDS recap

Multi-dimensional scaling (MDS)

$\label{eq:second} \textbf{Mathematical calling (MDS)} \\ & (= 0.000 \ \text{Mathematical calling (MDS)} \ \text{Mathematical calling (MDS)$

Principal Component Analysis

- Data matrix $X = (D \times n)$ each column a data vector
- XX^T is covariance matrix (unnormalized; must be centered!)
- SVD(X, d) = $U\Sigma V^T$ keep only d principal eigenvectors, and d largest e-values $U = d \times D$ basis vectors
- $Y = U^T X = \Sigma V^T = d \times n$ low dimensional representation of data
- $UU^T X$ = reconstruction of X (D dimensional, rank d)
- Encoding a new $x \in \mathbb{R}^D$: $y = U^T x$

PCA Dual algorithm

- more efficient when $D \gg n$
- Compute $X^T X = K$ Gram matrix (or kernel matrix)
- EIG(K, d) = $V\Sigma^2 V^T$ keep only d principal eigenvectors, and largest d e-values
- $Y = U^T X = \Sigma V^T = d \times n$ low dimensional representation of data (U not computed unless we want to reconstruct x data)

⁻Non-linear dimension reduction algorithms

PCA, Kernel PCA, MDS recap

—PCA in two ways

- Kernel PCA
- when data x mapped to high-dimensional feature space $\Phi(X)$
- $\langle \Phi(x), \Phi(x') \rangle = \kappa(x, x')$ (positive definite) kernel
- Gram matrix (Kernel matrix) $K \leftarrow [\kappa(x_i, x_j)]_{i,j=1}^n$
- $\kappa(x, x')$ is tractable to compute (Ex: Gaussian kernel $\kappa(x, x') = \exp(-||x - x'||^2/\hbar^2)$)
- Dual PCA $\Rightarrow Y = \Sigma V^T = d \times n$ (tractable!)
- What if data in Φ space not centered?
- The Centering Matrix H

$$H = I - \frac{1}{n} \mathbf{1}_{n \times n}$$

- Substracts the mean of a vector
- Properties of H: H symmetric, H² = H, H1 = 0, Ha = a_c (centered vector), HX^T = X_c^T (centers all columns of X^T)

Non-linear dimension reduction algorithms


```
PCA, Kernel PCA, MDS recap
    -Kernel PCA
```


Exercise 1

Properties of the centering matrix H Let $a \in \mathbb{R}^n$ be a vector, μ_a the mean of the elements of a,

$$a_c = a - \mu_a \mathbf{1}_{[1]} \text{ the centered vector } a. \tag{4}$$

Prove that **a**. *H* is symmetric, and idempotent $H^2 = H$. **b.** H1 = 0c. $Ha = a_c$ **d.** Show that **H** has an eigenvalue $\sigma_1 = 0$. What is the e-vector for σ_1 ? e. The eigenvalues of H are $\sigma_1 = 0$, $\sigma_{2:n} = 1$. Characterize the e-vector space for $\sigma_{2:n}$. **f.** Let $X \in \mathbb{R}^{n \times D}$ a matrix with rows equal to data points in D dimensions. Prove that $X_c = HX$ is a matrix whose rows (as data points) have 0 mean. **g.** Let $K = XX^T$ be a kernel matrix, and $K_c = X_c X_c^T$. Prove that $K_c = HKH$.

⁻Non-linear dimension reduction algorithms

−PCA, Kernel PCA, MDS recap └──Kernel PCA

Problem Given matrix of (squared) distances A ∈ ℝ^{n×n}, find a set of n points in d dimensions Y so that

$$D_Y = [\|y_i - y_j\|^2]_{i,j} \approx D$$

- Optimization problem min_{Y \in \mathbb{R}^{d \times n}} ||D D_Y||_F^2 with $||D D_Y||_F^2 = \sum_{ij} (d_{ij} ||y_i y_j||^2)^2$
- Solution
 - 1. Relation with Gram matrix (of centered data): $K_c = -1/2HDH^T$ where H is the centering matrix!
 - 2. Hence, optimization equivalent to $\min_{Y \in \mathbb{R}^{d \times n}} \sum_{ij} (\kappa(x_i, x_j) y_i^T y_j)^2$
 - 3. This is the same as rank *d* approximation to *K*! MDS has same solution *Y* as PCA if *D* contains Euclidean distances

-Non-linear dimension reduction algorithms

2022-05-18

PCA, Kernel PCA, MDS recap

-Multi-dimensional scaling (MDS)

Exercise 2

MDS and Kernel PCA Prove that $K_c = -\frac{1}{2}HDH$.

Principal Curves and Surfaces (PCS)

- \bullet Elegant algorithm , most useful for d=1 (curves)
- Also works in noise ??
- data in \mathbb{R}^D near a curve (or set of curves)
- Goal: track the ridge of the data density (will be biased estimator of curve \mathcal{M})

What is a density ridge

In other words, on a ridge

- $\nabla p \propto v_1$ direction of least negative curvature (LNC) of $\nabla^2 p$
- $\nabla p, v_1$ are tangent to the ridge

Gradient and Hessian for Gaussian KDE

- Data $\xi_{1:n} \in \mathbb{R}^D$
- Let p() be the kernel density estimator with some kernel width h.

$$p(\xi) = \frac{1}{nh^d} \sum_{i=1}^n \kappa(\frac{\xi - \xi_i}{h}) = \frac{1}{nh^d} \sum_{i=1}^n \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \omega_d$$
(5)

- We prefer to work with $\ln p$ which has the same critical points/ridges as p
- $\nabla \ln p = \frac{1}{p} \nabla p = g$ • $\nabla^2 \ln p = -\frac{1}{p^2} \nabla p \nabla p^T + \frac{1}{p} \nabla^2 p = H$ $g(\xi) = -\frac{1}{h^2} [\xi - \sum_{i=1}^n \xi_i \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \sum_{i=1}^n \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right)] = -\frac{1}{h^2} [\xi - m(\xi)]$ (6) Wi

• $H(\xi) = \sum_{i=1}^{n} w_i u_i u_i^T - g(\xi)g(\xi)^T - \frac{1}{h^2}I$

SCMS Algorithm

until convergence

- Algorithm SCMS finds 1 point on ridge; n restarts to cover all density
- Run time $\propto nD^2$ /iteration
- Storage $\propto D^2$
Principal curves found by SCMS

LBFGS=accelerated, approximate SCMS - coming next!

Accelerating SCMS

- reduce dependency on *n* per iteration
 - ignore points far away from ξ
 - use approximate nearest neighbors (clustering, KD-trees,...)
- reduce number of SCMS runs: start only from n' < n points
- reduce number iterations: track ridge instead of cold restarts
 - project ∇p on v_1 instead of v_1^{\perp}
 - tracking ends at critical point (peak or saddle)
- reduce dependence on D
 - approximate v₁ without computing whole H
 - $D^2 \leftarrow mD$ with $m \approx 5$

Manifold Learning

⁻Non-linear dimension reduction algorithms

Principal Curves and Surfaces (PCS)

Accelerating SCMS

- reduce dependency on n per iteration

 ignore points for away from ξ
 one approximate awards neighbors (clustering, KD term,...)

 reduce number of SCMS runs: start only from n° < n point
- reduce number iterations: track ridge instead of cold restarts project Vp on v, instead of v⁺_i tracking ends at orkinal point (peak or saidle)

approximate n₁ without computing while h
 , D² ← mD with m is 5

- Given $g \propto \nabla p(x)$
- Wanted $\operatorname{Proj}_{v_1} g = (I v_1 v_1^T)g$
- Need v₁ principal e-vector of H = ∇²(ln p) for λ₁ = largest e-value of H without computing/storing H
- First Idea use LBFGSS to approximate H^{-1} by $\hat{H^{-1}}$ of rank 2m [Nocedal & Wright]
- Run time $\propto Dm + m^2$ / iteration (instead of nD^2)
- Storage $\propto 2mD$ for $\{\xi^{k-l} \xi^{k-l-1}\}_{l=1:m}, \{g^{k-l} g^{k-l-1}\}_{l=1:m}$
- Problem: v₁ too inaccurate to detect stopping
- Second idea
 - 1. store $\{\xi^{k-l} \xi^{k-l-1}\}_{l=1:m} \cup \{g^{k-l} g^{k-l-1}\}_{l=1:m} = V$
 - span V approximates principal subspace of H
 - 2. minimize $v^T H v$ s.t. $v \in \text{span } V$ where H is exact Hessian
- Possible because $H = \sum w_i u_i u_i^T gg^T \frac{1}{h^2} I$ with $w_{1:n}, u_{1:n}$ computed during Mean-Shift
- Run time $\propto n'Dm + m^2$ / iteration (instead of nD^2)
- Storage $\propto 2mD$

2022-05-18

Exercise 3

Subspace constrained principal e-vector Let $H \in \mathbb{R}^{D \times D}$ be a symmetric matrix, and $V \in \mathbb{R}^{D \times m}$ an orthogonal matrix defining a subspace. We want to obtain

 $\underset{v \in \text{span } V, \|v\|=1}{\operatorname{argmax}} v^{\mathsf{T}} H v \quad \text{the principal e-vector constrained to } V. \tag{7}$

a. Prove that v can be obtained by calculating the principal e-vector of a symmetric $m \times m$ matrix W. Hint: v = Vu with $u \in \mathbb{R}^m$ for any $v \in \text{span } V$. **b.** What is W for the Hessian H used in SCMS? and what is the dimension of W in this case?

Non-linear dimension reduction algorithms summary

Paradigm	Input	Output	$f(new \ \xi)$	$f^{-1}(\text{new }p)$
local PCA	$\xi_{1:n} \in \mathbb{R}^D$	$y_{1:n} \in \mathbb{R}^d$ local maps	\checkmark	?
		(many)		
Principal Curves	$\xi_{1:n} \in \mathbb{R}^D$	$\xi_{1:n}' \in \mathbb{R}^D$ global map	\checkmark	N/A
SCMS			(if data kept)	
Embedding	$\xi_{1:n} \in \mathbb{R}^D$	$y_{1:n} \in \mathbb{R}^m$ global map	ad-hoc or	ad-hoc or
Algorithm		or $\in \mathbb{R}^d$ local maps	interpolation	interpolation

Embedding algorithms

Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...

- Map \mathcal{D} to \mathbb{R}^m where $m \geq d$ (global coordinates)
- Can also map a local neighborhood $U \subseteq \mathcal{D}$ to \mathbb{R}^d (local, intrinsic coordinates)

Input

- embedding dimension m
- neighborhood radius/kernel width ϵ
 - usually radius $r \approx 3 \times \epsilon$
- neighborhood graph

$$\{\operatorname{neigh}_i, \Xi_i, \text{ for } i = 1:n\}$$

 $A = [||\xi_i - \xi_j||]_{i,i=1}^n$ distance matrix, with $A_{ij} = \infty$ if $i \notin \text{neigh}_i$

The Isomap algorithm

() use Multi-Dimensional Scaling MDS(M, d) to obtain d dimensional coordinates Y for \mathcal{D}

• Works also for m > d

The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ , embedding dimension m

- **()** Compute Laplacian $L \in \mathbb{R}^{n \times n}$
- **2** Compute eigenvectors of *L* for smallest m + 1 eigenvalues $[\phi_0 \phi_1 \dots \phi_m] \in \mathbb{R}^{n \times m}$
 - ϕ_0 is constant and not informative

The embedding coordinates of p_i are $(\phi_{i1}, \dots, \phi_{is})$

The (renormalized) Laplacian

Laplacian

Input distance matris $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ

- Compute similarity matrix $S_{ij} = \exp\left(-\frac{A_{ij}^2}{\epsilon^2}\right) = \kappa(A_{ij}/\epsilon)$
- **2** Normalize columns $d_i = \sum_{i=1}^n S_{ii}$, $\tilde{L}_{ii} = S_{ii}/d_i$
- **③** Normalize rows $d'_i = \sum_{i=1}^n \tilde{L}_{ii}$, $P_{ii} = \tilde{L}_{ii}/d'_i$
- **4** $L = \frac{1}{2}(I P)$
- **Output** L, d'_i/d_i
- Laplacian L central to understanding the manifold geometry
- $\lim_{n\to\infty} L = \Delta_M$ [Coifman,Lafon 2006]
- Renormalization trick cancels effects of (non-uniform) sampling density [Coifman & Lafon 06]

Other Laplacians

•
$$L^{un} = \text{diag} \{ d_{1:n} \} - A$$

•
$$L^{rw} = I - \operatorname{diag} \{ d_{1:n} \}^{-1} A$$

• $L^{rw} = I - \text{diag} \{ d_{1:n} \}^{-1} A$ • $L^n = I - \text{diag} \{ d_{1:n} \}^{-1/2} A \text{diag} \{ d_{1:n} \}^{-1/2}$

unnormalized Laplacian random walk Laplacian normalized Laplacian

-Non-linear dimension reduction algorithms

- —Embedding algorithms
 - —The (renormalized) Laplacian

Exercise 4

Renormalized Laplacian a. Show that $L1_{\|}=0$ for the renormalized Laplacian. Hence L always has a 0 e-value.

Exercise 5 (Unnormalized Laplacian)

Let $L^{un} = D - A$ be the unnormalized Laplacian of graph defined by A. Prove that $x^T L^{un} x = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$ for any $x \in \mathbb{R}^n$.

Exercise 6 (Double Normalization Laplacian)

A more standard presentation of the Re-normalized Laplacian is this:

- 1. Compute similarity matrix S
- 2. First normalization $d_i = \sum_{i=1}^n S_{ij}$, $\tilde{L}_{ij} = S_{ij}/d_i d_j$ (symmetric matrix)
- 3. Second normalization $d'_i = \sum_{i=1}^n \tilde{L}_{ij}$, $P_{ij} = \tilde{L}_{ij}/d'_i$ (asymmetric)
- 4. $L = \frac{1}{\epsilon^2}(I P)$

Show that this L is the same as in the algorithm on the previous page.

Isomap vs. Diffusion Maps

Isomap

- Preserves geodesic distances
 - $\bullet\,$ but only when ${\cal M}$ is flat and "data" convex
- Computes all-pairs shortest paths $\mathcal{O}(n^3)$
- Stores/processes dense matrix

DiffusionMap

- Distorts geodesic distances
- Computes only distances to nearest neighbors O(n^{1+ε})
- Stores/processes sparse matrix

• t-SNE, UMAP visualization algorithms

Heuristic algorithms

- Local Linear Embedding (LLE)
- one of the first embedding algorithms
- later analysis showed that LLE has no limit when $n \to \infty$
- closest modern version is Local Tangent Space Alignment (LTSA)

• t-Stochastic Neighbor Embedding (t-SNE)

Input similarity matrix *S*, embedding dimension *s*

Init choose embedding points $y_{1:n} \in \mathbb{R}^s$ at random

- **(**) $S_{ii} \leftarrow 0$, normalize rows $d_i = \sum_i S_{ij}$, $P_{ij} = S_{ij}/d_i$
- **2** symmetrize $P = \frac{1}{2n}(P + P^T) P$ is distribution over pairs of neighbors (i, j)
- § Š_{ij} = κ̃(||y_i − y_j||)compute similarity in output space where κ̃(z) = 1/(1+z²) the Cauchy (Student t with 1 degree of freedom)
- **(**) Define distribution Q with $Q_{ij} \propto S_{ij}$
- **(a)** Change $y_{i:n}$ to decrease the Kullbach-Leibler divergence $KL(P||Q) = \sum_{i,j} P_{ij} \ln \frac{P_{ij}}{Q_{ij}}$ (by gradient descent) and repeat from step 3
- t-SNE is empirically useful for visualizing clusters
- *t*-SNE is proved to create artefacts

UMAP: Uniform Manifold Approximation and Projection [McInnes, Healy, Melville,2018]

Input k number nearest neighbors, d,

- Find k-nearest neighbors
- 2 Construct (asymmetric) similarities w_{ij} , so that $\sum_{i} w_{ij} = \log_2 k$. $W = [w_{ij}]$.
- **3** Symmetrize $S = W + W^T W \cdot * W^T$ is similarity matrix.
- Initialize embedding ϕ by LAPLACIANEIGENMAPS.
- Optimize embedding.
 - Iteratively for n_{iter} steps
 - Sample an edge *ij* with probability $\propto \exp d_{ij}$
 - **(a)** Move ϕ_i towards ϕ_j
 - **③** Sample a random j' uniformly
 - **(4)** Move ϕ_i away from $\phi_{i'}$

Stochastic approximate logistic regression of $||\phi_i - \phi_j||$ on d_{ij} .

Output ϕ

Embedding algorithms summary

- Many different algorithms exist
- All start from neighborhood graph and distance matrix A
- Most use e-vectors of a tranformation of A (preserve the sparsity pattern)
- DiffusionMaps can separate manifold shape from sampling density
- LTSA "correct" at boundaries
- Isomap best for flat manifolds with no holes, small data
- Most embeddings sensitive to
 - choice of radius ϵ (within "correct" range)
 - sampling density p
 - neighborhoods K-nn vs. radius
 - i.e. most embeddings introduce distortions

Manifold Learning as a sandwich

- what distance measure?
- what graph? [Maier,von Luxburg, Hein 2009]
- what kernel width ϵ ? [Perrault-Joncas,M,McQueen NIPS17]
- what intrinsic dimension d? [Chen,Little,Maggioni,Rosasco] and variant by [Perrault-Joncas,M,McQueen NIPS17]
- what embedding dimension $s \ge d$? [Chen, M, NeurIPS19]
- ML Algorithm: DIFFMAPS, LTSA
 - Cluster [M,Shi 00],[M,Shi 01]...[M NeurIPS18]
 - Estimate/correct distortion: Metric Learning and Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
 - Validate *d*, *s*, [select eigenvectors] [Chen, M NeurIPS19]
 - Topological Data Analysis (TDA)
 - Meaning of coordinates [M,Koelle,Zhang, 2018,2022]
 - Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M, Kevrekidis 2021]
 - Finding ridges and saddle points (in progress)

Outline

What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

- Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms

Metric preserving manifold learning – Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning Intuition
- Estimating the Riemannian metric
- Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

Embedding in 2 dimensions by different manifold learning algorithms

Original data (Swiss Roll with hole)

Hessian Eigenmaps (HE)

Laplacian Eigenmaps (LE)

Local Linear Embedding (LLE)

Isomap

Local Tangent Space Alignment (LTSA)

Failures vs. distortions

- Distortion vs failure
 - ϕ distorts if distances, angles, density not preserved, but ϕ smooth and invertible
 - If ϕ does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
 - Examples: points ξ_i, ξ_j are not neighbors in M but are neighbors in φ(M), or viceversa (hence φ is not invertible, or not continuous)
- Most common modes of failure
 - distance matrix A does not capture topology (artificial "holes" or "bridges")
 - $\bullet\,$ usually becasuse kernel width ϵ too small or too large
 - · choice of e-vectors

Artefacts

- Artefacts=features of the embedding that do not exist in the data (clusters, holes, "arms", "horseshoes")
- What to beware of when you compute an embedding
 - algorithms that claim to choose ϵ automatically
 - confirming the embedding is "correct" by visualization: tends to over-smooth, i.e. ϵ over-estimated
 - K-nn (default in sk-learn!) instead of radius-neighbors: tends to create clusters
 - large variations in density: subsample data to make it more uniform
 - "horseshoes": choose other e-vectors (ϕ is almost singulare)
- Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural networks

Manifold Learning

⁻Metric preserving manifold learning – Riemannian manifolds basics

- -Embedding algorithms introduce distortions
 - -Artefacts

Exercise 7

Independent coordinates and artefacts for long strips, a,b

a. Generate a rectangle with a hole. Generate the following sets of points on 2D grids.

	dimension	grid spacing	number points
left side	$[0,1] \times [0,1]$	0.05	441
middle	$[1.01, 2] \times [0, 0.3]$	0.01	$100 \times 31 = 3100$
middle	$[1.01, 2] \times [0.7, 1.]$	0.01	$100 \times 31 = 3100$
right side	[2.05, 3] imes [0, 1]	0.05	420
\mathcal{D}	$[0,3] \times [0,1]$		7081

Plot the data to verify that it is a rectangle with a rectangular hole. The density of the grid is not uniform. In all plots from here on, color the points by their original y coordinate. Ensure that the dot size is small enough for clarity (size 1 or less recommended).

b. Let D consist of all the points in **a**. Set the kernel width $\epsilon = 0.05$ and the [optional] neighborhood radius r = 0.15001 (i.e. just over 0.15). Calculate for these data

- A the distance matrix (can be a dense matrix)
- S the similarity matrix (can be a dense matrix)
- $L^{rw} = I D^{-1}S$ the random walks Laplacian
- L the renormalized Laplacian

Display these matrices as square images with an appropriate color scale (don't forget to show the scale with each plot).

Manifold Learning

-Metric preserving manifold learning – Riemannian manifolds basics

- -Embedding algorithms introduce distortions
 - —Artefacts

Exercise 8

Independent coordinates and artefacts for long strips - c,d,e,f

c. Compute $\phi_{0,9}$ the principal e-vectors 0:9 for L and discard ϕ_0 the constant vector. Display $\phi_{1,9}$ as a pairwise plot. Ensure that the dot size is small enough for clarity (size 1 or less recommended). **d.** From the plot in **c.** choose a pair of coordinates ϕ_1, ϕ_k that produces the embedding visually closest to the original rectangle. While there is some subjectivity in this choice, embeddings that are "almost dimension 1", or with self-crossings are NOT close to the original data. **e.** Repeat **c**, **d** with L^{rw} , denoting its e-vectors $\psi_{0,9}$.

f. Embed \mathcal{D} with ISOMAP (OK to use outsourced code) and plot the data in the embedding coordinates y_1, y_2 .

Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^D \longrightarrow \phi(p) = x \in \mathbb{R}^m$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism

preserves topology often satisfied by embedding algorithms

- Mapping ϕ is **isometry**
 - preserves distances along curves in \mathcal{M} , angles, volumes For most algorithms, in most cases, ϕ is not isometry

Preserves topology

Preserves topology + intrinsic geometry

Theoretical results in isometric embedding

Positive results

General theory

- Nash's Theorem: Isometric embedding is possible.
- Diffusion Maps embedding is isometric in the limit [Berard,Besson,Gallot 94],[Portegies:16]

Special cases

- Isomap [Bernstein, Langford, Tennenbaum 03] recovers flat manifolds isometrically
- LE/DM recover sphere, torus with equal radii (sampled uniformly)
 - Follows from consistency of Laplacian eigenvectors [Hein & al 07,Coifman & Lafon 06, Singer 06, Ting & al 10, Gine & Koltchinskii 06]

Negative results

- Obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg&al 08]

Empirically, most algorithms

- preserve neighborhoods (=topology)
- distort distances along manifold (=geometry)
- distortions occur even in the simplest cases
- distortion persists when $n \to \infty$
- one cause of distortion is variations in sampling density *p*; [Coifman& Lafon 06] introduced Diffusion Maps (DM) to eliminate these

Metric Manifold Learning

Wanted

- \bullet eliminate distortions for any "well-behaved" ${\cal M}$
- and any any "well-behaved" embedding $\phi(\mathcal{M})$
- in a tractable and statistically grounded way

Idea

```
Given data \mathcal{D} \subset \mathcal{M}, some embedding \phi(\mathcal{D}) that preserves topology (true in many cases)
```

- Estimate distortion of ϕ and correct it!
- The correction is called the pushforward Riemannian Metric g
- The distortion is the dual pushforward Riemannian Metric h

Corrections for 3 embeddings of the same data

Isomap

Laplacian Eigenmaps

Manifold Learning

⁻⁻Metric preserving manifold learning - Riemannian manifolds basics

-Metric Manifold Learning - Intuition

--- Corrections for 3 embeddings of the same data

Definition 4 (Riemannian Metric)

The Riemannian metric g defines an inner product $<,>_g$ on the tangent space $\mathcal{T}_p\mathcal{M}$ for every $p\in\mathcal{M}.$

Definition 5 (Riemannian Manifold)

A Riemannian manifold (\mathcal{M}, g) is a smooth manifold \mathcal{M} with a Riemannian metric g defined at every point $p \in \mathcal{M}$.

- p point on \mathcal{M}
- $T_p \mathcal{M} =$ tangent subspace at p

at each $p \in \mathcal{M}$, g defines quadratic form G_p

 $\langle v, w \rangle = v^T G_p w$ for $v, w \in T_p \mathcal{M}$ and for $p \in \mathcal{M}$

- g is symmetric and positive definite tensor field

- g also called first fundamental form

In coordinates at each point $p \in \mathcal{M}$, G_p is a positive definite matrix of rank d

What is a (Riemannian) metric?

- In Euclidean space \mathbb{R}^d , the scalar product $\langle u, v \rangle = u^T v$
- From the scalar product we derive norms $||u||^2 = \langle u, u \rangle$, distances ||u v||, angles $\cos(u, v) = \langle u, v \rangle / (||u|| ||v||)$.
- Any other scalar product on \mathbb{R}^d is defined by $\langle u, v \rangle_G = u^T G v = (G^{1/2}u)^T (G^{1/2}v)$, with $G \succ 0$ defines the metric
- Note that whenever $G \succ 0$, $H = G^{-1} \succ 0$ also defines a metric
- On a manifold \mathcal{M} , at each $p \in \mathcal{M}$ we have a different G_p
- The function $g(p) = G_p$ is called the Riemannian metric

letric preserving manifold learning - Riemannian manifolds basics

All (intrinsic) geometric quantities on $\mathcal M$ involve g

• Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

• Length of curve γ

$$I(\gamma) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

 $\bullet\,$ Under a change of parametrization, g changes in a way that leaves geometric quantities invariant

Calculating distances in the manifold ${\cal M}$

true distance d = 1.57

		Shortest	Metric	Rel.
Embedding	f(p) - f(p')	Path	â	error
Original data	1.41	1.57	1.62	3.0%
Isomap $m = 2$	1.66	1.75	1.63	3.7%
LTSA $m = 2$	0.07	0.08	1.65	4.8%
LE <i>m</i> = 2	0.08	0.08	1.62	3.1%

curve $\gamma \approx (y_0, y_1, \dots, y_K)$ path in graph

geodesic distance
$$\hat{d} = \sum_{k=0}^{K} \sqrt{(y_k - y_{k-1})^T \frac{G(y_k) + G(y_{k-1})}{2} (y_k - y_{k-1})}$$

G for Sculpture Faces

- n = 698 gray images of faces in $D = 64 \times 64$ dimensions
- head moves up/down and right/left

Problem: Estimate the g associated with ϕ

- Given:
 - data set $\mathcal{D} = \{p_1, \ldots, p_n\}$ sampled from Riemannian manifold $(\mathcal{M}, g_0), \mathcal{M} \subset \mathbb{R}^D$
 - embedding { y_i = φ(p_i), p_i ∈ D } by e.g DiffusionMap, Isomap, LTSA, ...
- Estimate $G_i \in \mathbb{R}^{m \times m}$ the pushforward Riemannian metric at $p_i \in D$ in the embedding coordinates ϕ

• The embedding $\{y_{1:n}, G_{1:n}\}$ will preserve the geometry of the original data

Relation between g and Δ

- $\Delta = Laplace$ -Beltrami operator on \mathcal{M}
 - $\Delta = \operatorname{div} \cdot \operatorname{grad}$
 - on C^2 , $\Delta f = \sum_j \frac{\partial^2 f}{\partial \xi_i^2}$

• on weighted graph with similarity matrix S, and $t_p = \sum_{pp'} S_{pp'}$, $\Delta = \text{diag} \{ t_p \} - S$

- $\Delta = Laplace$ -Beltrami operator on \mathcal{M}
- G Riemannian metric (in coordinates)
- $H = G^{-1}$ matrix inverse

(Differential geometric fact)

$$\Delta f = \sqrt{\det(H)} \sum_{l} \frac{\partial}{\partial x^{l}} \left(\frac{1}{\sqrt{\det(H)}} \sum_{k} H_{lk} \frac{\partial}{\partial x^{k}} f \right),$$

• L the renormalized Laplacian estimates Δ (very well studied \checkmark)

Estimating the Riemannian metric

Estimation of G^{-1}

Let Δ be the Laplace-Beltrami operator on \mathcal{M} , $H = G^{-1}$, and $k, l = 1, 2, \dots d$.

$$\frac{1}{2}\Delta(\phi_k - \phi_k(p))(\phi_l - \phi_l(p))|_{\phi_k(p),\phi_l(p)} = H_{kl}(p)$$

Intuition:

- Δ applied to test functions $f = \phi_k^{\text{centered}} \phi_l^{\text{centered}}$
- this produces H(p) in the given coordinates
- consistent estimation of Δ is well studied [Coifman&Lafon 06,Hein&al 07]

Metric Manifold Learning algorithm

Given dataset \mathcal{D}

- Preprocessing (construct neighborhood graph, ...)
- 2 Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- Stimate discretized Laplace-Beltrami operator L
- Estimate H_p and $G_p = H_p^{\dagger}$ for all p

• For i, j = 1 : m, $H^{ij} = \frac{1}{2} [L(\phi_i * \phi_j) - \phi_i * (L\phi_j) - \phi_j * (L\phi_i)]$ where X * Y denotes elementwise product of two vectors $X, Y \in \mathbb{R}^N$ • For $p \in \mathcal{D}$, $H_p = [H_p^{ij}]_{ij}$ • For $p \in \mathcal{D}$, $(V, \Sigma) \leftarrow SVD(H_p, d)$ and $G_p = V\Sigma^{-1}V^T = H_p^{\dagger}$ (rank d (pseudo)inverse of H_p) Output (ϕ_p, G_p) for all p

```
Manifold Learning
```

⁻Metric preserving manifold learning – Riemannian manifolds basics

—Estimating the Riemannian metric

```
The case m > d
```

$$\label{eq:response} \begin{split} & Maric Mandid Laming Agenthm \\ & Generating (model with based set), \\ & 0 & Operating (mo$$

Algorithm METRICEMBEDDING

Input data \mathcal{D} , *m* embedding dimension, ϵ resolution

- 1. Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- 2. Construct similary matrix

$$S_{pp'} = e^{-\frac{1}{\epsilon^2}||p-p'||^2}$$
 iff p, p' neighbors, $S = [S_{pp'}]_{p,p' \in \mathcal{I}}$

3. Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

3.1
$$t_p = \sum_{p' \in \mathcal{D}} S_{pp'}, T = \operatorname{diag} t_p, p \in \mathcal{D}$$

3.2 $\tilde{S} = T^{-1}ST^{-1}$
3.3 $\tilde{t}_p = \sum_{p' \in \mathcal{D}} \tilde{S}_{pp'}, \tilde{T} = \operatorname{diag} \tilde{t}_p, p \in \mathcal{D}$
3.4 $P = \tilde{T}^{-1}\tilde{S}$
3.5 $L = (I - P)/\epsilon^2$

- 4. Embedding $[\phi_p]_{p \in \mathcal{D}}$ = EMBEDDINGALG (\mathcal{D}, m)
- 5. Estimate embedding metric H_p at each point

denote Z = X * Y, $X, Y \in \mathbb{R}^N$ iff $Z_i = X_i Y_i$ for all i5.1 For i, j = 1 : m, $H^{ij} = \frac{1}{2} [L(\phi_i * \phi_j) - \phi_i * (L\phi_j) - \phi_j * (L\phi_i)]$ (column vector) 5.2 For $p \in \mathcal{D}$, $\tilde{H}_p = [H^{ij}_p]_{ij}$ and $H_p = \tilde{H}_p^{\dagger}$ Ouput $(\phi_p, H_p)_{p \in \mathcal{D}}$

2022-05-18

Computational cost

```
n = |\mathcal{D}|, D = \text{data dimension}, m = \text{embedding dimension}
```

- Neighborhood graph +
- (a) Similarity matrix $O(n^2 D)$ (or less)
- Laplacian $\mathcal{O}(n^2)$
- EMBEDDINGALG e.g. $\mathcal{O}(mn^2)$ (eigenvector calculations)
- Embedding metric
 - $\mathcal{O}(nm^2)$ obtain g^{-1} or h^{\dagger}
 - $\mathcal{O}(nm^3)$ obtain g or h
- Steps 1-3 are part of many embedding algorithms
- Steps 3–5 independent of ambient dimension D
- Matrix inversion/pseudoinverse can be performed only when needed
Metric Manifold Learning summary

Why useful

- Measures local distortion induced by any embedding algorithm
 - $G_i = I_d$ when no distortion at p_i
- Corrects distortion
 - Integrating with the local volume/length units based on G_i
 - Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable

Applications

- Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]
- Helps with estimation of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco])
- selecting eigencoordinates [Chen, M NeurIPS19]

Outline

- What is manifold learning good for?
- 2 Manifolds, Coordinate Charts and Smooth Embeddings
- Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms
- Metric preserving manifold learning Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning Intuition
 - Estimating the Riemannian metric
- Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

What graph? Radius-neighbors vs. k nearest-neighbors

- *k*-nearest neighbors graph: each node has degree *k*
- radius neighbors graph: p, p' neighbors iff $||p p'|| \le r$
- Does it matter?
- Yes, for estimating the Laplacian and distortion
 - Why? [Hein 07, Coifman 06, Ting 10, \dots] k-nearest neighbor Laplacians do not converge to Laplace-Beltrami operator Δ
 - but to $\Delta + 2\nabla(\log p) \cdot \nabla$ (bias due to non-uniform sampling)

Effect of re-normalization

Choosing ϵ

- Every manifold learning algorithm starts with a neighborhood graph
- Parameter ϵ
 - is neighborhood radius
 - and/or kernel banwidth

• recall $\kappa(p,p') = e^{-\frac{||p-p'||^2}{e^2}}$ if $||p-p'||^2 \le c\epsilon$ and 0 otherwise $(c \in [1,10])$

 ϵ too small

 ϵ too large

Methods for choosing ϵ

• Theoretical (asymptotic) result $\sqrt{\epsilon} \propto n^{-\frac{1}{d+6}}$ [Singer06]

In practice:

- Visual inspection?
- Cross-validation ?
 - only if related to prediction task
- [Chen&Buja09] heuristic for k-nearest neighbor graph
 - unsupervised
 - depends on embedding method used
 - optimizes consistency of k-nn graph in data and embedding
 - $\bullet\,$ k-nearest neighbor graph has different convergence properties than ϵ neighborhood
- Geometric Consistency heuristic [Perrault-Joncas&Meila17]
 - unsupervised
 - optimizes Laplacian, does not require embedding
 - · computes "isometry" in 2 different ways and minimizes distortion between them

Geometric Consistency (GC): Idea

• Idea: choose ϵ so that geometry encoded by L_{ϵ} is closest to data geometry

- For given ϵ and data point p
 - Project neighbors of p onto tangent subspace
 - local embedding around p
 - approximately isometric to original data
 - 2 Calculate Laplacian $L(\epsilon)$ at p and estimate distortion $H_{\epsilon,p}$
 - $H_{\epsilon,p}$ must be $\approx I_d$ identity matrix

The distortion measure

Input: data set \mathcal{D} , dimension $d' \leq d$, scale ϵ

- **(**) Estimate Laplacian $L(\epsilon)$ and weights $w_i(\epsilon)$ with LAPLACIAN
- Project data on tangent plane at p
 - For each p
 - Let $\operatorname{neigh}_{p,\epsilon}^{\cdot} = \{p' \in \mathcal{D}, \; \|p' p\| \leq c\epsilon\}$ where $c \in [1, 10]$
 - Calculate (weighted) local PCA wLPCA(neigh_{p,e}, d') (with weights $w_i(\epsilon)$)
 - Calculate coordinates z_i in PCA space for points in neigh_{p,e}
- Estimate $H_{\epsilon,p} \in \mathbb{R}^{d' \times d'}$ by RMETRIC
 - For each p
 - Use row p of $L(\epsilon)$
 - z_i 's play the role of ϕ
- Compute squared Loss over all p's Loss(ε) = Σ_{p∈D} ||H_{ε,p} − I_d||²₂
 Output Loss(ε)
- Select $\epsilon^* = \operatorname{argmin}_{\epsilon} \operatorname{Loss}(\epsilon)$
- $d' \leq d$ (more robust)
- minimize by 0-th order optimization (faster than grid search)

Distorsions versus radi

Example ϵ and distortion for aspirin

- Each point = a configuration of the aspirin molecule
- Cloud of point in D = 47 dimensions embedded in m = 3 dimensions
- (only 1 cluster shown)

Bonus: Intrinsic Dimension Estimation in noise

- Geometric consistency + eigengap method of [Chen,Little,Maggioni,Rosasco,2011]
 - **(1)** do local PCA for a range of ϵ values

 $Loss(\epsilon)$ vs. ϵ

- 2 choose appropriate radius ϵ (by Geometric consistency)
- dimension = largest eigengap between λ_k and λ_{k+1} at radius ε (proof by Chen&al) ("largest" = most frequent largest over a sample)

Singular values of LPCA vs. ϵ

Example: Intrinsic Dimension Estimation results

Summary

- what distance measure?
- what graph? [Maier,von Luxburg, Hein 2009]
- what kernel width ϵ ? [Perrault-Joncas,M,McQueen NIPS17]
- what intrinsic dimension d? [Chen,Little,Maggioni,Rosasco] and variant by [Perrault-Joncas,M,McQueen NIPS17]
- what embedding dimension $s \ge d$? [Chen,M,NeurIPS19]
- ML Algorithm: DIFFMAPS, LTSA
 - Cluster [M,Shi 00], [M,Shi 01]... [M NeurIPS18]
 - Estimate/correct distortion: Metric Learning and Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
 - Validate d, s, [select eigenvectors] [Chen, M NeurIPS19]
 - Topological Data Analysis (TDA)
 - Meaning of coordinates [M,Koelle,Zhang, 2018,2022]
 - Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M, Kevrekidis 2021]
 - Finding ridges and saddle points (in progress)