A tutorial on Manifold Learning for real data

The Fields Institute Workshop on Manifold and Graph-based learning

Marina Meilă

Department of Statistics University of Washington

19-20 May, 2022

Manifold Learning

About these course notes

- This is the "handout" version of the course slides.
- In the actual course, most differential geometric concepts are defined informally.
- These notes include more formal definitions for these concepts, to help you ground them in mathematics.
- I have also included some simple but illuminating extra proofs; some proofs are given as exercises for the reader.
- Linear algebra concepts (like SVD, $\succ 0$ matrix) or other math/stat/CS concepts used generically in machine learning are not defined.

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings
(3) Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms
(4) Metric preserving manifold learning - Riemannian manifolds basics
- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4. Metric preserving manifold learning - Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

What is manifold learning good for?

- Principal Component Analysis (PCA). What is it good for?

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

- Preprocessed by Jacob VanderPlas and Grace Telford
- $n=675,000$ spectra $\times D=3750$ dimensions

embedding by James McQueen

Molecular configurations
aspirin molecule

- Data from Molecular Dynamics (MD) simulations of small molecules by [Chmiela et al. 2016]
- $n \approx 200,000$ configurations $\times D \sim 20-60$ dimensions

When to do (non-linear) dimension reduction

- $n=698$ gray images of faces in
$D=64 \times 64$ dimensions
- head moves up/down and right/left
- With only two degrees of freedom, the faces define a 2 D manifold in the space of all 64×64 gray images

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4. Metric preserving manifold learning - Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

Manifold. Basic definitions

- manifold
- chart
- atlas
- d is called intrinsic dimension of \mathcal{M}
- If the original data $p \in \mathbb{R}^{D}$, call D the ambient dimension.

Manifold Learning
Manifolds, Coordinate Charts and Smooth Embeddings
LManifold. Basic definitions

Manifold. Basic definitions

Manifold. Mathematical definitions

Definition 1 (Smooth Manifold (?))

- A d-dimensional manifold \mathcal{M} is a topological (Hausdorff) space such that every point has a neighborhood homeomorphic to an open subset of \mathbb{R}^{d}.
- A coordinate chart (U, x) of manifold \mathcal{M} is an open set $U \subset \mathcal{M}$ together with a homeomorphism $x: U \rightarrow V$ of U onto an open subset $V \subset \mathbb{R}^{d}=\left\{\left(x^{1}, \ldots, x^{d}\right) \in \mathbb{R}^{d}\right\}$.
- A C^{∞}-atlas \mathcal{A} is a collection of charts, $\mathcal{A} \equiv \cup_{\alpha \in I}\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ where I is an index set, such that $\mathcal{M}=\cup_{\alpha \in I} U_{\alpha}$ and for any $\alpha, \beta \in I$ the corresponding transition map $x_{\beta} \circ x_{\alpha}^{-1}: x_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \mathbb{R}^{d}$ is continuously differentiable any number of times.
- Notation: $p \in U \longrightarrow x(p)=\left(x^{1}(p), \ldots, x^{d}(p)\right)$.
- The mappings $\{x\}$ are not uniquely defined. This is a problem for comparing results of manifold estimation algorithms
- Generally, a manifold needs more than one chart. This is not a severe problem, and can be circumvented as we will see next. For simplicity, we will talk only about a single chart from now on.

Intrinsic dimension. Tangent subspace

Manifold Learning

- Manifolds, Coordinate Charts and Smooth Embeddings

Intrinsic dimension. Tangent subspace

- Denote by $\phi: V \subseteq \mathbb{R}^{d} \rightarrow U \subseteq \mathcal{M}$ the inverse of coordinate chart x. A smooth curve γ on \mathcal{M} is defined as the image by ϕ of a smooth curve $\tilde{\gamma}$ in V . A smooth curve admits a tangent at every interior point.
- The tangent subspace of \mathcal{M} at $p \in \mathcal{M}$, denoted $\mathcal{T}_{p} \mathcal{M}$ is defined as the set of all tangents at p to smooth curves curves on \mathcal{M} that pass through point p.

$$
\operatorname{dim} \mathcal{T}_{p} \mathcal{M}=d
$$

- If $\phi: \mathcal{M} \rightarrow \mathbb{R}$ is a scalar function on \mathcal{M}, then its gradient at p, denoted $\nabla f(p)$, is a vector in $\mathcal{T}_{p} \mathcal{M}$.
- exterior derivative
- geodesic distance

Manifold Learning

- Manifolds, Coordinate Charts and Smooth Embeddings

Intrinsic dimension. Tangent subspace

Tangents to curves - detail
The Chain Rule $f=h \circ g \Leftrightarrow f(x)=h(g(x))$
where $\phi:(-1,1) \rightarrow U \subset \mathbb{R}^{D}, g:(-1,1) \rightarrow$
$V \subset \mathbb{R}^{d}, h: V \rightarrow U$

$$
\frac{d}{d t} f=d h \frac{d}{d t} g
$$

Where $\frac{d}{d t} f \in \mathbb{R}^{D}, \frac{d}{d t} g \in \mathbb{R}^{d}, d h=\left[\frac{\partial h^{i}}{\partial x^{j}} j_{i=1: D}^{j=1: d}\right.$ is
the Jacobian of h

- Smooth curve on $\mathcal{M}: \gamma=\phi \circ \bar{\gamma}, \gamma(t)=\phi\left(\bar{\gamma}^{1}(t), \ldots \bar{\gamma}^{d}(t)\right)$
- Hence $\frac{d \gamma}{d t}=d \phi \cdot \frac{d \bar{\gamma}}{d t}$

> | (Smooth) Curve $\bar{\gamma}:(-1,1) \rightarrow \mathbb{R}^{d}$ iff |
| :--- |
| $\bar{\gamma}^{j}:(-1,1) \rightarrow \mathbb{R}$ are smooth functions, |
| for $j=1: d . \bar{\gamma}(t)$ is point on curve at |
| t. |

Manifold Learning

- Manifolds, Coordinate Charts and Smooth Embeddings

Intrinsic dimension. Tangent subspace

An example, I

- \mathcal{M} is unit sphere in \mathbb{R}^{3}, coordinatex x, y, z
- U is top patch of \mathcal{M}. How to map U to $V \subset \mathbb{R}^{2}$?

1. We find the inverse mapping $\phi: V \rightarrow U$
2. Let V be a the interior of a circle, coordinates $\left(x^{1}, x^{2}\right)$, point $(0,0,1) \in U$ maps to $(0.0) \in V$.
3. Let $r^{2}=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}$, and map it to the arc distance from $(0,0,1)$ to $p=(x, y, z)$. Then

$$
\begin{aligned}
& x=x^{1} \sin r \\
& y=x^{2} \sin r \\
& z=1-\cos r
\end{aligned}
$$

4. Let's compute the derivatives (by chain rule)

$$
\begin{aligned}
\frac{\partial r}{\partial x^{1}} & =\frac{x^{1}}{r} & \frac{\partial x}{\partial x^{1}} & =\sin r+\frac{\left(x^{1}\right)^{2}}{r} \cos r \\
\frac{\partial r}{\partial x^{2}} & =\frac{x^{2}}{r} & \frac{\partial x}{\partial x^{2}} & =\frac{x^{1} x^{2}}{r} \cos r \\
\frac{\partial z}{\partial x^{1}} & =\frac{x^{1}}{r} \sin r & \frac{\partial y}{\partial x^{1}} & =\frac{x^{1} x^{2}}{r} \cos r \\
\frac{\partial z}{\partial x^{2}} & =\frac{x^{2}}{r} \sin r & \frac{\partial y}{\partial x^{2}} & =\sin r+\frac{\left(x^{2}\right)^{2}}{r} \cos r
\end{aligned}
$$

Manifold Learning

- Manifolds, Coordinate Charts and Smooth Embeddings
- Now let $\bar{\gamma}:(-\epsilon, \epsilon) \rightarrow V$ be the curve $\bar{\gamma}(t)=[t t]^{T}$. Hence $\frac{d \bar{\gamma}}{d t}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$
- The tangent vector in $p=(0,0,1)$ is $\frac{d \gamma}{d t}(0,0)=d \phi \frac{d \bar{\gamma}}{d t}$ with coordinates

$$
\frac{d \gamma}{d t}(0,0)=\left[\begin{array}{l}
\sin r+\frac{\left(x^{1}\right)^{2}+x^{1} x^{2}}{{ }^{2}} \cos r \tag{2}\\
\sin r+\frac{\left(x^{2}\right)^{2}+x^{1} x^{2}}{\sin ^{2}} \cos r \\
\sin r \frac{x^{1}+x^{2}}{r}
\end{array}\right]
$$

Embeddings

- One can circumvent using multiple charts by mapping the data into $m>d$ dimensions.
- Let $\phi: \mathcal{M} \rightarrow \mathbb{R}^{m}$ be a smooth function, and let $\mathcal{N}=\phi(\mathcal{M})$.
- ϕ is an embedding if the inverse $\phi^{-1}: \mathcal{N} \rightarrow \mathcal{M}$ exists and is differentiable (a diffeormorphism).
- Whitney's Embedding Theorem (?) states that any d-dimensional smooth manifold can be embedded into $\mathbb{R}^{2 d}$.
- Hence, if $d \ll D$, very significant dimension reductions can be achieved with a single map $\phi: \mathcal{M} \rightarrow \mathbb{R}^{m}$.
- Manifold learning algorithms aim to construct maps ϕ like the above from finite data sampled from \mathcal{M}.

```
Manifold Learning

Let \(\mathcal{M}, \mathcal{N}\) be two manifolds, and \(\phi: \mathcal{M} \rightarrow \mathcal{N}\) be a \(C^{\infty}\) (i.e smooth) map between them. At each point \(p \in \mathcal{M}\), the Jacobian \(d \phi_{p}\) of \(\phi\) at \(p\) defines a linear mapping between \(T_{p} \mathcal{M}\), and the tangent subspace to \(\mathcal{N}\) at \(\phi(p) T_{\phi(p)} \mathcal{N}\).

\section*{Definition 2 (Rank of a Smooth Map)}

A smooth map \(\phi: \mathcal{M} \rightarrow \mathcal{N}\) has rank \(k\) if the Jacobian \(d \phi_{p}: T_{p} \mathcal{M} \rightarrow T_{\phi(p)} \mathcal{N}\) of the map has rank \(k\) for all points \(p \in \mathcal{M}\). Then we write \(\operatorname{rank}(\phi)=k\).

\section*{Definition 3 (Embedding)}

Let \(\mathcal{M}\) and \(\mathcal{N}\) be smooth manifolds and let \(\phi: \mathcal{M} \rightarrow \mathcal{N}\) be a smooth injective map, that is \(\operatorname{rank}(\phi)=\operatorname{dim}(\mathcal{M})\), then \(\phi\) is called an immersion. If \(\mathcal{M}\) is homeomorphic to its image under \(\phi\), then \(\phi\) is an embedding of \(\mathcal{M}\) into \(\mathcal{N}\).

\section*{Examples of manifolds and coordinate charts}

Examples of manifolds and coordinate charts

\section*{Not manifolds}
- dimension not constant
- unions of manifolds that intersect
- sharp corners (non-smooth)
- many/most neural network embeddings
- manifolds can have border

\section*{Outline}
(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings
(3) Non-linear dimension reduction algorithms
- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms
4. Metric preserving manifold learning - Riemannian manifolds basics
- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

Non-linear dimension reduction: Three principles

Algorithm given \(\mathcal{D}=\left\{\xi_{1}, \ldots \xi_{n}\right\}\) from \(\mathcal{M} \subset \mathbb{R}^{D}\), map them by Algorithm \(f\) to \(\left\{y_{1}, \ldots y_{n}\right\} \subset \mathbb{R}^{m}\)
Assumption if points from \(\mathcal{M}, n \rightarrow \infty, f\) is embedding of \(\mathcal{M}\)
( \(f\) "recovers" \(\mathcal{M}\) of arbitrary shape).
(1) Local (weighted) PCA (IPCA)
(2) Principal Curves and Surfaces (PCS)
(3) Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...)
(9) [Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?
- Intrinsic dimension d
- must be estimated (we assume we know it)
- sample complexity is exponential in \(d\) - NONPARAMETRIC
- non-uniform sampling
- volume of \(\mathcal{M}\) (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of \(\mathcal{M}\)
- curvature
- ESSENTIAL smoothness parameter: the neighborhood radius

\section*{Parametric vs. non-parametric}

An example of density estimation with data \(x_{1: n} \in \mathbb{R}\).
(1) Gaussian \(N\left(\mu, \sigma^{2}\right)\) parametric.
- \(\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}\)
- Error \(\mu-\hat{\mu}\) has mean 0 and standard deviation \(\sigma_{\hat{\mu}}=\frac{\sigma}{\sqrt{n}} \propto n^{-1 / 2}\)
- To increase accuracy \(\times 10, n\) must increase \(\times 10^{2}=100\)
(2) Kernel density estimation (KDE), non-parametric
\[
p_{h}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \kappa\left(\frac{x_{i}-x}{h}\right)
\]
- \(\kappa=N(0,1)\) the kernel, \(h>0\) is the kernel width
- Accuracy for KDE \(\propto n^{-2 / 5}\)
- To increase accuracy \(\times 10, n\) must increase \(\times 10^{5 / 2} \approx 316\)
\begin{tabular}{lccccl}
\hline Model & e.g. & \begin{tabular}{c} 
distribution \\
shape
\end{tabular} & error rate & \multicolumn{2}{c}{\begin{tabular}{c} 
to decrease err. by 10 \\
we need samples \(\times\)
\end{tabular}} \\
\hline Parametric & \(\left.N\left(\mu, \sigma^{2}\right)\right)\) & fixed & \(n^{-1 / 2}\) & \(n \times 10^{2}\) & 100 \\
Non-parametric & KDE in \(\mathbb{R}\) & any & \(n^{-2 / 5}\) & \(n \times 10^{5 / 2}\) & 316 \\
& KDE in \(\mathbb{R}^{d}\) & any & \(n^{-2 /(d+4)}\) & \(n \times 10^{(d+4) / 2}\) & \(1000(d=2)\) \\
& & & & & \(3163(d=3)\) \\
& & & & & \(10,000(d=4)\)
\end{tabular}

\section*{Neighborhood graphs}
- All ML algorithms start with a neighborhood graph over the data points
- neigh \({ }_{i}\) denotes the neighbors of \(\xi_{i}\), and \(k_{i}=\mid\) neigh \(_{i} \mid\).
- \(\Xi_{i}=\left[\xi_{i^{\prime}}\right]_{i^{\prime} \in \text { neigh }_{i}} \in \mathbb{R}^{D \times k_{i}}\) contains the coordinates of \(\xi_{i^{\prime}}\) 's neighbors
- In the radius-neighbor graph, the neighbors of \(\xi_{i}\) are the points within distance \(r\) from \(\xi_{i}\), i.e. in the ball \(B_{r}\left(\xi_{i}\right)\).
- In the \(\mathbf{k}\)-nearest-neighbor ( \(\mathbf{k}-\mathbf{n n}\) ) graph, they are the \(k\) nearest-neighbors of \(\xi_{i}\).
- k-nn graph has many computational advantages
- constant degree \(k\) (or \(k-1\) )
- connected for any \(k>1\)
- more software available
- but much more difficult to use for consistent estimation of manifolds (see later, and )

data \(\xi_{1}, \ldots \xi_{n} \subset \mathbb{R}^{D}\)

neighborhood graph

\(A\) (sparse) matrix of distances between neighbors

\section*{Local Principal Components Analysis (LPCA)}

Idea Approximate \(\mathcal{M}\) with tangent subspaces at a finite number of data points
(1) Pick a point \(\xi_{i} \in \mathcal{D}\)
(2) Find neigh \({ }_{i}\), perform PCA on neigh \({ }_{i} \cup\left\{\xi_{i}\right\}\) and obtain (affine) subspace with basis \(T_{i} \in \mathbb{R}^{D \times d}\)
(3) Represent \(\xi_{i^{\prime}} \in\) neigh \(_{i}\) by \(y_{i}=\operatorname{Proj}_{T_{i}} \xi_{i^{\prime}}\)
\[
\begin{equation*}
y_{i^{\prime}}=T_{i}^{T}\left(\xi_{i^{\prime}}-\xi_{i}\right) \quad \text { new coordinates of } \xi_{i^{\prime}} \text { in } \mathcal{T}_{\xi_{i}} \mathcal{M} \tag{3}
\end{equation*}
\]


Repeat for a sample of \(n^{\prime}<n\) data points

Local PCA
- For \(n, n^{\prime}\) sufficiently large, \(\mathcal{M}\) can be approximated with arbitrary accuracy

So, are we done?
Some issues with LPCA
- Point \(\xi_{j}\) may be represented in multiple \(T_{i}\) 's (minor)
- New coordinates \(y_{j}\) are relative to local \(T_{i}\)
- Fine for local operations like regression
- Number of charts depends on extrinsic properties
- Cumbersome for larger scale operations like following a curve on \(\mathcal{M}\)
- Biased in noise


\section*{Multi-dimensional scaling (MDS)}
- (See notes for PCA, Kernel PCA, centering matrix H, MDS for details)
- Problem Given matrix of (squared) distances \(D \in \mathbb{R}^{n \times n}\), find a set of \(n\) points in \(d\) dimensions \(Y=d \times n\) so that
\[
D_{Y}=\left[\left\|y_{i}-y_{j}\right\|^{2}\right]_{i, j} \approx D
\]
- Useful when
- original points are not vectors but we can compute distances (e.g string edit distances, philogenetic distances)
- original points are in high dimensions
- original distances are geodesic distances on a manifold \(\mathcal{M}\)

\section*{MDS Algorithm}
(1) Calculate \(K=-\frac{1}{2} H D H^{T}\)
(2) Compute its \(d\) principal e-vectors/values: \(K=V \Sigma^{2} V^{T}\)
(3) \(Y=\Sigma V^{T}\) are new coordinates

The Centering Matrix H
\[
H=I-\frac{1}{n} 1_{n \times n}
\]

Q: Could MDS be an embedding algorithm? What is different about MDS and upcoming algorithms?
```

Manifold Learning
-Non-linear dimension reduction algorithms
Multi-dimensional scaling (MDS)

```

Multi-dimensional scaling (MDS)

-Problam Given metrix of (squiresf) ditancon \(D \in \mathbb{R}^{n \times x}\), fend a me of \(n\) pointa in d dimension \(Y=d \times n=0\) that
\(D_{y}=\left\|x-y_{i}\right\|^{2} \|_{4}=D\)

\section*{Principal Component Analysis}
- Data matrix \(X=(D \times n)\) each column a data vector
- \(X X^{T}\) is covariance matrix (unnormalized; must be centered!)
- \(\operatorname{SVD}(X, d)=U \Sigma V^{T}\) keep only \(d\) principal eigenvectors, and \(d\) largest e-values \(U=d \times D\) basis vectors
- \(Y=U^{T} X=\Sigma V^{T}=d \times n\) low dimensional representation of data
- \(U U^{T} X=\) reconstruction of \(X(D\) dimensional, rank \(d)\)
- Encoding a new \(x \in \mathbb{R}^{D}: y=U^{T} x\)

PCA Dual algorithm
- more efficient when \(D \gg n\)
- Compute \(X^{T} X=K\) Gram matrix (or kernel matrix)
- \(\operatorname{EIG}(K, d)=V \Sigma^{2} V^{T}\) keep only \(d\) principal eigenvectors, and largest \(d\) e-values
- \(Y=U^{\top} X=\Sigma V^{\top}=d \times n\) low dimensional representation of data ( \(U\) not computed unless we want to reconstruct \(x\) data)

\section*{Manifold Learning}
-Non-linear dimension reduction algorithms
Mult--dimensional scaling (MDS)

 dimeniom \(Y=d \times n=0\) that
\(D_{y}=\left\|x-y_{i}\right\|^{2} \|_{y}<0\)
2022-05-18
PCA, Kernel PCA, MDS recap
PCA in two ways

\section*{- Usefiu whan}




The Centering Mastix \(H\)
- Kernel PCA
- when data \(x\) mapped to high-dimensional feature space \(\Phi(X)\)
- \(\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle=\kappa\left(x, x^{\prime}\right)\) (positive definite) kernel
- Gram matrix (Kernel matrix) \(K \leftarrow\left[\kappa\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n}\)
- \(\kappa\left(x, x^{\prime}\right)\) is tractable to compute
(Ex: Gaussian kernel \(\left.\kappa\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / h^{2}\right)\right)\)
- Dual PCA \(\Rightarrow Y=\Sigma V^{T}=d \times n\) (tractable!)
- What if data in \(\Phi\) space not centered?
- The Centering Matrix \(H\)
\[
H=I-\frac{1}{n} 1_{n \times n}
\]
- Substracts the mean of a vector
- Properties of \(H: H\) symmetric, \(H^{2}=H, H 1=0, H a=a_{c}\) (centered vector), \(H X^{T}=X_{c}^{T}\) (centers all columns of \(X^{T}\) )

Manifold Learning

\section*{-Non-linear dimension reduction algorithms \\ PCA, Kernel PCA, MDS recap \\ Kernel PCA}

Multi-dimensional scaling (MDS)
- (See notut top PCA Marral PCA, antearing mutrio \(H_{1}\) MDS tor deaste)


\(D_{y}=\left\|x-y_{i}\right\|^{2} y_{y}=D\)
- Usefui whan


MDS Algarithm
0 Calculate \(K=-\frac{1}{2} H_{D H}{ }^{\top}\).

The Centering Murici \(H\)

\section*{Exercise 1}

Properties of the centering matrix \(H\) Let \(a \in \mathbb{R}^{n}\) be a vector, \(\mu_{a}\) the mean of the elements of \(a\),
\[
\begin{equation*}
\left.a_{c}=a-\mu_{\mathrm{a}} \mathbf{1}_{[ } \quad\right] \text { the centered vector } a . \tag{4}
\end{equation*}
\]

Prove that a. \(H\) is symmetric, and idempotent \(H^{2}=H\).
b. \(H 1=0\)
c. \(H a=a_{c}\)
d. Show that \(H\) has an eigenvalue \(\sigma_{1}=0\). What is the e-vector for \(\sigma_{1}\) ?
e. The eigenvalues of \(H\) are \(\sigma_{1}=0, \sigma_{2: n}=1\). Characterize the e-vector space for \(\sigma_{2: n}\).
f. Let \(X \in \mathbb{R}^{n \times D}\) a matrix with rows equal to data points in \(D\) dimensions. Prove that \(X_{c}=H X\) is a matrix whose rows (as data points) have 0 mean.
g. Let \(K=X X^{\top}\) be a kernel matrix, and \(K_{c}=X_{c} X_{c}^{\top}\). Prove that \(K_{c}=H K H\).
```

Manifold Learning

Multi-dimensional scaling (MDS)

- (Sae nota tox PCA Korral PCA, antearing matio M_{1} MDS tor deasta)
 dimenionm $y=d \times n$ wo that
$D_{y}=\left\|x-y_{i}\right\|^{2} \|_{y}<D$
- Uaefid whan

: Cormeute its d prinipipl ewecten/ valuan $K=V \Sigma^{2} V^{7}$
- $Y=\Sigma V^{T}$ sre new tocodinates

The Centering Murici H

- Problem Given matrix of (squared) distances $A \in \mathbb{R}^{n \times n}$, find a set of n points in d dimensions Y so that

$$
D_{Y}=\left[\left\|y_{i}-y_{j}\right\|^{2}\right]_{i, j} \approx D
$$

- Optimization problem $\min _{Y \in \mathbb{R}^{d \times n}}\left\|D-D_{Y}\right\|_{F}^{2}$ with $\left\|D-D_{Y}\right\|_{F}^{2}=\sum_{i j}\left(d_{i j}-\left\|y_{i}-y_{j}\right\|^{2}\right)^{2}$
- Solution

1. Relation with Gram matrix (of centered data): $K_{c}=-1 / 2 H D H^{T}$ where H is the centering matrix!
2. Hence, optimization equivalent to $\min _{Y \in \mathbb{R}^{d \times n}} \sum_{i j}\left(\kappa\left(x_{i}, x_{j}\right)-y_{i}^{\top} y_{j}\right)^{2}$
3. This is the same as rank d approximation to K ! MDS has same solution Y as PCA if D contains Euclidean distances
```
    Manifold Learning
    _Non-linear dimension reduction algorithms
        -PCA, Kernel PCA, MDS recap
    -Multi-dimensional scaling (MDS)
2022-05-18
```

Multi-dimensional scaling (MDS)

dimeniom $Y=d \times n=0$ that

Exercise 2

MDS and Kernel PCA Prove that $K_{c}=-\frac{1}{2} H D H$.

Principal Curves and Surfaces (PCS)

??

- Elegant algorithm, most useful for $d=1$ (curves)
- Also works in noise ??
- data in \mathbb{R}^{D} near a curve (or set of curves)
- Goal: track the ridge of the data density (will be biased estimator of curve \mathcal{M})

What is a density ridge

$\nabla p=0$
$\nabla^{2} p \prec 0$
$\nabla p=0$
$\nabla^{2} p$ has $\lambda_{1}>0, \lambda_{2: D}<0$
$\nabla p=0$ in $\operatorname{span}\left\{v_{2: D}\right\}$
$\nabla^{2} p$ has $\lambda_{2: D}<0,\left(v_{1: D}\right.$ e-vectors $\left.\nabla^{2} p\right)$

In other words, on a ridge

- $\nabla p \propto v_{1}$ direction of least negative curvature (LNC) of $\nabla^{2} p$
- $\nabla p, v_{1}$ are tangent to the ridge

Gradient and Hessian for Gaussian KDE

- Data $\xi_{1: n} \in \mathbb{R}^{D}$
- Let $p()$ be the kernel density estimator with some kernel width h.

$$
\begin{equation*}
p(\xi)=\frac{1}{n h^{d}} \sum_{i=1}^{n} \kappa\left(\frac{\xi-\xi_{i}}{h}\right)=\frac{1}{n h^{d}} \sum_{i=1}^{n} \exp \left(-\frac{\left(\xi-\xi_{i}\right)^{2}}{2 h^{2}}\right) / \omega_{d} \tag{5}
\end{equation*}
$$

- We prefer to work with $\ln p$ which has the same critical points/ridges as p
- $\nabla \ln p=\frac{1}{p} \nabla p=g$
- $\nabla^{2} \ln p=-\frac{1}{p^{2}} \nabla p \nabla p^{T}+\frac{1}{p} \nabla^{2} p=H$

$$
\begin{equation*}
g(\xi)=-\frac{1}{h^{2}}[\xi-\sum_{i=1}^{n} \underbrace{\xi_{i} \underbrace{\exp \left(-\frac{\left(\xi-\xi_{i}\right)^{2}}{2 h^{2}}\right) / \sum_{i=1}^{n} \exp \left(-\frac{\left(\xi-\xi_{i}\right)^{2}}{2 h^{2}}\right)}_{i=1}]=-\frac{1}{h^{2}}[\underbrace{\xi-m(\xi)}_{\text {Mean-shift }}] .] .] . ~}_{w_{i}} \tag{6}
\end{equation*}
$$

- $H(\xi)=\sum_{i=1}^{n} w_{i} u_{i} u_{i}^{T}-g(\xi) g(\xi)^{T}-\frac{1}{h^{2}} l$

SCMS Algorithm

SCMS $=$ Subspace Constrained Mean Shift

Init any ξ^{1}
Density estimated by $p=$ data \star Gaussian kernel of width h for $k=1,2, \ldots$
(1) calculate $g^{k} \propto \nabla \ln p\left(\xi^{k}\right)$
by Mean-Shift $\mathcal{O}(n D)$
(2) $H^{k}=\nabla^{2} \ln p\left(\xi^{k}\right)$
(3) compute v_{1} principal e-vector of H^{k}
$\mathcal{O}\left(n D^{2}\right)$
(c) $\xi^{k+1} \leftarrow \xi^{k}+\operatorname{Proj}_{v_{1}} g^{k}$
until convergence

- Algorithm SCMS finds 1 point on ridge; n restarts to cover all density
- Run time $\propto n D^{2} /$ iteration
- Storage $\propto D^{2}$

Principal curves found by SCMS

LBFGS = accelerated, approximate SCMS - coming next!

Accelerating SCMS

- reduce dependency on n per iteration
- ignore points far away from ξ
- use approximate nearest neighbors (clustering, KD-trees,...)
- reduce number of SCMS runs: start only from $n^{\prime}<n$ points
- reduce number iterations: track ridge instead of cold restarts
- project ∇p on v_{1} instead of v_{1}^{\perp}
- tracking ends at critical point (peak or saddle)
- reduce dependence on D
- approximate v_{1} without computing whole H
- $D^{2} \leftarrow m D$ with $m \approx 5$

Manifold Learning
-Non-linear dimension reduction algorithms

- Given $g \propto \nabla p(x)$
- Wanted $\operatorname{Proj}_{v_{1} \perp} g=\left(I-v_{1} v_{1}^{T}\right) g$
- Need v_{1}
 without computing/storing H
- First Idea use LBFGSS to approximate H^{-1} by $\hat{H^{-1}}$ of rank $2 m$ [Nocedal \& Wright]
- Run time $\propto D m+m^{2} /$ iteration (instead of $n D^{2}$)
- Storage $\propto 2 m D$ for $\left\{\xi^{k-1}-\xi^{k-I-1}\right\}_{l=1: m},\left\{g^{k-I}-g^{k-I-1}\right\}_{l=1: m}$
- Problem: v_{1} too inaccurate to detect stopping
- Second idea

1. store $\left\{\xi^{k-1}-\xi^{k-I-1}\right\}_{I=1: m} \cup\left\{g^{k-I}-g^{k-I-1}\right\}_{I=1: m}=V$

- span V approximates principal subspace of H

2. minimize $v^{T} H v$ s.t. $v \in \operatorname{span} V$ where H is exact Hessian

- Possible because $H=\sum w_{i} u_{i} u_{i}^{T}-g g^{T}-\frac{1}{h^{2}} /$ with $w_{1: n}, u_{1: n}$ computed during Mean-Shift
- Run time $\propto n^{\prime} D m+m^{2} /$ iteration (instead of $n D^{2}$)
- Storage $\propto 2 m D$

Manifold Learning
L Non-linear dimension reduction algorithms
Principal Curves and Surfaces (PCS)
(Approximate) SCMS step without computing Hessian

Exercise 3

Subspace constrained principal e-vector Let $H \in \mathbb{R}^{D \times D}$ be a symmetric matrix, and $V \in \mathbb{R}^{D \times m}$ an orthogonal matrix defining a subspace. We want to obtain

$$
\begin{equation*}
\underset{v \in \operatorname{span} V,\|v\|=1}{\operatorname{argmax}} v^{\top} H v \quad \text { the principal e-vector constrained to } V \text {. } \tag{7}
\end{equation*}
$$

a. Prove that v can be obtained by calculating the principal e-vector of a symmetric $m \times m$ matrix W. Hint: $v=V u$ with $u \in \mathbb{R}^{m}$ for any $v \in \operatorname{span} V$.
b. What is W for the Hessian H used in SCMS? and what is the dimension of W in this case?

Non-linear dimension reduction algorithms summary

Paradigm	Input	Output	$f($ new $\xi)$	$f^{-1}($ new $p)$
local PCA	$\xi_{1: n} \in \mathbb{R}^{D}$	$y_{1: n} \in \mathbb{R}^{d}$ local maps (many)	\checkmark	$?$
Principal Curves	$\xi_{1: n} \in \mathbb{R}^{D}$	$\xi_{1: n}^{\prime} \in \mathbb{R}^{D}$ global map	\checkmark SCMS	(if data kept)
Embedding Algorithm	$\xi_{1: n} \in \mathbb{R}^{D}$	$y_{1: n} \in \mathbb{R}^{m}$ global map or $\in \mathbb{R}^{d}$ local maps	ad-hoc or interpolation	ad-hoc or interpolation

Embedding algorithms

Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...

- Map \mathcal{D} to \mathbb{R}^{m} where $m \geq d$ (global coordinates)
- Can also map a local neighborhood $U \subseteq \mathcal{D}$ to \mathbb{R}^{d} (local, intrinsic coordinates)

Input

- embedding dimension m
- neighborhood radius/kernel width ϵ
- usually radius $r \approx 3 \times \epsilon$
- neighborhood graph
$\left\{\right.$ neigh $_{i}, \bar{\Xi}_{i}$, for $\left.i=1: n\right\}$
$A=\left[\left\|\xi_{i}-\xi_{j}\right\|\right]_{i, j=1}^{n}$ distance matrix, with $A_{i j}=\infty$ if $i \notin$ neigh $_{j}$

The Isomap algorithm

Isomap Algorithm [Tennenbaum, deSilva \& Langford 00]
Input A, dimension d
(1) Find all shortest path distances in neighborhood graph
if $A_{i j}=\infty$, then $A_{i j} \leftarrow$ graph distance between i, j
(2) Construct matrix of squared distances

$$
M=\left[\left(A_{i j}\right)^{2}\right]
$$

(3) use Multi-Dimensional Scaling $\operatorname{MDS}(M, d)$ to obtain d dimensional coordinates Y for \mathcal{D}

- Works also for $m>d$

The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ, embedding dimension m
(1) Compute Laplacian $L \in \mathbb{R}^{n \times n}$
(2) Compute eigenvectors of L for smallest $m+1$ eigenvalues $\left[\phi_{0} \phi_{1} \ldots \phi_{m}\right] \in \mathbb{R}^{n \times m}$

- ϕ_{0} is constant and not informative

The embedding coordinates of p_{i} are ($\phi_{i 1}, \ldots \phi_{i s}$)

The (renormalized) Laplacian

Laplacian

Input distance matris $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ
(1) Compute similarity matrix $S_{i j}=\exp \left(-\frac{A_{i j}^{2}}{\epsilon^{2}}\right)=\kappa\left(A_{i j} / \epsilon\right)$
(2) Normalize columns $d_{j}=\sum_{i=1}^{n} S_{i j}, \tilde{L}_{i j}=S_{i j} / d_{j}$
(3) Normalize rows $d_{i}^{\prime}=\sum_{j=1}^{n} \tilde{L}_{i j}, P_{i j}=\tilde{L}_{i j} / d_{i}^{\prime}$
(9) $L=\frac{1}{\epsilon^{2}}(I-P)$
(0) Output $L, d_{i}^{\prime} / d_{i}$

- Laplacian L central to understanding the manifold geometry
- $\lim _{n \rightarrow \infty} L=\Delta_{\mathcal{M}}$ [Coifman,Lafon 2006]
- Renormalization trick cancels effects of (non-uniform) sampling density [Coifman \& Lafon 06]

Other Laplacians

- $L^{u n}=\operatorname{diag}\left\{d_{1: n}\right\}-A$
unnormalized Laplacian
- $L^{r w}=I-\operatorname{diag}\left\{d_{1: n}\right\}^{-1} A$
- $L^{n}=I-\operatorname{diag}\left\{d_{1: n}\right\}^{-1 / 2} \operatorname{Adiag}\left\{d_{1: n}\right\}^{-1 / 2}$

The (renormalized) Laplacian

$$
\begin{aligned}
& \text { Laplacian } \\
& \text { Imput datanco metria } A \in \text { Rnxa, bandwith. }
\end{aligned}
$$

Exercise 4

Renormalized Laplacian a. Show that $L 1_{\square}=0$ for the renormalized Laplacian. Hence L always has a 0 e-value.

Exercise 5 (Unnormalized Laplacian)

Let $L^{u n}=D-A$ be the unnormalized Laplacian of graph defined by A. Prove that $x^{T} L^{u n} x=\sum_{(i, j) \in \mathcal{E}}\left(x_{i}-x_{j}\right)^{2}$ for any $x \in \mathbb{R}^{n}$.

Exercise 6 (Double Normalization Laplacian)

A more standard presentation of the Re-normalized Laplacian is this:

1. Compute similarity matrix S
2. First normalization $d_{i}=\sum_{j=1}^{n} S_{i j}, \tilde{L}_{i j}=S_{i j} / d_{i} d_{j}$ (symmetric matrix)
3. Second normalization $d_{i}^{\prime}=\sum_{j=1}^{n} \tilde{L}_{i j}, P_{i j}=\tilde{L}_{i j} / d_{i}^{\prime}$ (asymmetric)
4. $L=\frac{1}{\epsilon^{2}}(I-P)$

Show that this L is the same as in the algorithm on the previous page.

$$
\begin{aligned}
& \text { Othe Laplations } \\
& \begin{aligned}
\text { Othe Laplotions } \\
\cdot 10 \\
\hline
\end{aligned}
\end{aligned}
$$

Isomap vs. Diffusion Maps

Isomap

- Preserves geodesic distances
- but only when \mathcal{M} is flat and "data" convex
- Computes all-pairs shortest paths $\mathcal{O}\left(n^{3}\right)$
- Stores/processes dense matrix

DiffusionMap

- Distorts geodesic distances
- Computes only distances to nearest neighbors $\mathcal{O}\left(n^{1+\epsilon}\right)$
- Stores/processes sparse matrix
- t-SNE, UMAP visualization algorithms

Heuristic algorithms

- Local Linear Embedding (LLE)
- one of the first embedding algorithms
- later analysis showed that LLE has no limit when $n \rightarrow \infty$
- closest modern version is Local Tangent Space Alignment (LTSA)
- t-Stochastic Neighbor Embedding (t-SNE)

Input similarity matrix S, embedding dimension s
Init choose embedding points $y_{1: n} \in \mathbb{R}^{s}$ at random
(1) $S_{i i} \leftarrow 0$, normalize rows $d_{i}=\sum_{j} S_{i j}, P_{i j}=S_{i j} / d_{i}$
(2) symmetrize $P=\frac{1}{2 n}\left(P+P^{T}\right) P$ is distribution over pairs of neighbors (i, j)
(3) $\tilde{S}_{i j}=\tilde{\kappa}\left(\left\|y_{i}-y_{j}\right\|\right)$ compute similarity in output space
where $\tilde{\kappa}(z)=\frac{1}{1+z^{2}}$ the Cauchy (Student t with 1 degree of freedom)
(9) Define distribution Q with $Q_{i j} \propto S_{i j}$
(9) Change $y_{i: n}$ to decrease the Kullbach-Leibler divergence $K L(P \| Q)=\sum_{i, j} P_{i j} \ln \frac{P_{i j}}{Q_{i j}}$ (by gradient descent) and repeat from step 3

- t-SNE is empirically useful for visualizing clusters
- t-SNE is proved to create artefacts

UMAP: Uniform Manifold Approximation and Projection [Mclnnes, Healy, Melville,2018]

Input k number nearest neighbors, d,
(1) Find k-nearest neighbors
(2) Construct (asymmetric) similarities $w_{i j}$, so that $\sum_{j} w_{i j}=\log _{2} k . W=\left[w_{i j}\right]$.
(3) Symmetrize $S=W+W^{\top}-W . * W^{\top}$ is similarity matrix.
(9) Initialize embedding ϕ by LaplacianEigenmaps.
© Optimize embedding.
Iteratively for $n_{\text {iter }}$ steps
(1) Sample an edge $i j$ with probability $\propto \exp -d_{i j}$
(2) Move ϕ_{i} towards ϕ_{j}
(3) Sample a random j^{\prime} uniformly
(- Move ϕ_{i} away from $\phi_{j^{\prime}}$
Stochastic approximate logistic regression of $\left\|\phi_{i}-\phi_{j}\right\|$ on $d_{i j}$.
Output ϕ

Embedding algorithms summary

- Many different algorithms exist
- All start from neighborhood graph and distance matrix A
- Most use e-vectors of a tranformation of A (preserve the sparsity pattern)
- DiffusionMaps - can separate manifold shape from sampling density
- LTSA - "correct" at boundaries
- Isomap - best for flat manifolds with no holes, small data
- Most embeddings sensitive to
- choice of radius ϵ (within "correct" range)
- sampling density p
- neighborhoods K-nn vs. radius
i.e. most embeddings introduce distortions

Manifold Learning as a sandwich

- what distance measure?
- what graph? [Maier,von Luxburg, Hein 2009]
- what kernel width ϵ ? [Perrault-Joncas,M,McQueen NIPS17]
- what intrinsic dimension d ?
[Chen,Little,Maggioni,Rosasco] and variant by [Perrault-Joncas,M,McQueen NIPS17]
- what embedding dimension $s \geq d$? [Chen,M,NeurIPS19]

ML Algorithm: DiffMaps, LTSA

- Cluster [M,Shi 00],[M,Shi 01]... [M NeurIPS18]
- Estimate/correct distortion: Metric Learning and Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Validate d, s, [select eigenvectors] [Chen, M NeurIPS19]
- Topological Data Analysis (TDA)
- Meaning of coordinates [M,Koelle,Zhang, 2018,2022]
- Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M, Kevrekidis 2021]
- Finding ridges and saddle points (in progress)

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4. Metric preserving manifold learning - Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Hessian Eigenmaps (HE)

Local Linear Embedding (LLE)

Isomap

Local Tangent Space Alignment (LTSA)

Failures vs. distortions

- Distortion vs failure
- ϕ distorts if distances, angles, density not preserved, but ϕ smooth and invertible
- If ϕ does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
- Examples: points ξ_{i}, ξ_{j} are not neighbors in \mathcal{M} but are neighbors in $\phi(\mathcal{M})$, or viceversa (hence ϕ is not invertible, or not continuous)
- Most common modes of failure
- distance matrix A does not capture topology (artificial "holes" or "bridges")
- usually becasuse kernel width ϵ too small or too large
- choice of e-vectors

Artefacts

- Artefacts=features of the embedding that do not exist in the data (clusters, holes, "arms", "horseshoes")
- What to beware of when you compute an embedding
- algorithms that claim to choose ϵ automatically
- confirming the embedding is "correct" by visualization: tends to over-smooth, i.e. ϵ over-estimated
- K-nn (default in sk-learn!) instead of radius-neighbors: tends to create clusters
- large variations in density: subsample data to make it more uniform
- "horseshoes": choose other e-vectors (ϕ is almost singulare)
- Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural networks

Exercise 7

Independent coordinates and artefacts for long strips, a,b
a. Generate a rectangle with a hole. Generate the following sets of points on 2D grids.

	dimension	grid spacing	number points
left side	$[0,1] \times[0,1]$	0.05	441
middle	$[1.01,2] \times[0,0.3]$	0.01	$100 \times 31=3100$
middle	$[1.01,2] \times[0.7,1]$.	0.01	$100 \times 31=3100$
right side	$[2.05,3] \times[0,1]$	0.05	420
\mathcal{D}	$[0,3] \times[0,1]$		7081

Plot the data to verify that it is a rectangle with a rectangular hole. The density of the grid is not uniform. In all plots from here on, color the points by their original y coordinate. Ensure that the dot size is small enough for clarity (size 1 or less recommended).
b. Let \mathcal{D} consist of all the points in a.. Set the kernel width $\epsilon=0.05$ and the [optional] neighborhood radius $r=0.15001$ (i.e. just over 0.15). Calculate for these data

- A the distance matrix (can be a dense matrix)
- S the similarity matrix (can be a dense matrix)
- $L^{r w}=I-D^{-1} S$ the random walks Laplacian
- L the renormalized Laplacian

Display these matrices as square images with an appropriate color scale (don't forget to show the scale with each plot).

Manifold Learning
-Metric preserving manifold learning - Riemannian manifolds basics
Embedding algorithms introduce distortions
Artefacts

Exercise 8

Independent coordinates and artefacts for long strips - c,d,e,f
c. Compute $\phi_{0: 9}$ the principal e-vectors $0: 9$ for L and discard ϕ_{0} the constant vector. Display $\phi_{1: 9}$ as a pairwise plot. Ensure that the dot size is small enough for clarity (size 1 or less recommended). d. From the plot in \mathbf{c}. choose a pair of coordinates ϕ_{1}, ϕ_{k} that produces the embedding visually closest to the original rectangle. While there is some subjectivity in this choice, embeddings that are "almost dimension 1", or with self-crossings are NOT close to the original data.
e. Repeat $\mathbf{c , d}$ with $L^{r w}$, denoting its e-vectors $\psi_{0: 9}$.
f. Embed \mathcal{D} with Isomap (OK to use outsourced code) and plot the data in the embedding coordinates y_{1}, y_{2}.

Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^{D} \longrightarrow \phi(p)=x \in \mathbb{R}^{m}$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism
preserves topology
often satisfied by embedding algorithms
- Mapping ϕ is isometry
- preserves distances along curves in \mathcal{M}, angles, volumes

For most algorithms, in most cases, ϕ is not isometry

Preserves topology
Preserves topology + intrinsic geometry

Theoretical results in isometric embedding

Positive results

General theory

- Nash's Theorem: Isometric embedding is possible.
- Diffusion Maps embedding is isometric in the limit
[Berard,Besson,Gallot 94],[Portegies:16]
Special cases
- Isomap [Bernstein, Langford, Tennenbaum 03] recovers flat manifolds isometrically
- LE/DM recover sphere, torus with equal radii (sampled uniformly)
- Follows from consistency of Laplacian eigenvectors [Hein \& al 07,Coifman \& Lafon 06, Singer 06, Ting \& al 10, Gine \& Koltchinskii 06]

Negative results

- Obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg\&al 08]

Empirically, most algorithms

- preserve neighborhoods (=topology)
- distort distances along manifold (=geometry)
- distortions occur even in the simplest cases
- distortion persists when $n \rightarrow \infty$
- one cause of distortion is variations in sampling density p; [Coifman\& Lafon 06] introduced Diffusion Maps (DM) to eliminate these

Metric Manifold Learning

Wanted

- eliminate distortions for any "well-behaved" \mathcal{M}
- and any any "well-behaved" embedding $\phi(\mathcal{M})$
- in a tractable and statistically grounded way

Idea
Given data $\mathcal{D} \subset \mathcal{M}$, some embedding $\phi(\mathcal{D})$ that preserves topology (true in many cases)

- Estimate distortion of ϕ and correct it!
- The correction is called the pushforward Riemannian Metric g
- The distortion is the dual pushforward Riemannian Metric h

Corrections for 3 embeddings of the same data

Isomap

Laplacian Eigenmaps

Manifold Learning
-Metric preserving manifold learning - Riemannian manifolds basics
-Metric Manifold Learning - Intuition
Corrections for 3 embeddings of the same data

Definition 4 (Riemannian Metric)

The Riemannian metric g defines an inner product $<,>_{g}$ on the tangent space $\mathcal{T}_{p} \mathcal{M}$ for every $p \in \mathcal{M}$.

Definition 5 (Riemannian Manifold)

A Riemannian manifold (\mathcal{M}, g) is a smooth manifold \mathcal{M} with a Riemannian metric g defined at every point $p \in \mathcal{M}$.

- p point on \mathcal{M}
- $\mathcal{T}_{p} \mathcal{M}=$ tangent subspace at p
at each $p \in \mathcal{M}, g$ defines quadratic form G_{p}

$$
<v, w>=v^{\top} G_{p} w \quad \text { for } v, w \in \mathcal{T}_{p} \mathcal{M} \text { and for } p \in \mathcal{M}
$$

- g is symmetric and positive definite tensor field
- g also called first fundamental form

In coordinates at each point $p \in \mathcal{M}, G_{p}$ is a positive definite matrix of rank d

What is a (Riemannian) metric?

- In Euclidean space \mathbb{R}^{d}, the scalar product $\langle u, v\rangle=u^{T} v$
- From the scalar product we derive norms $\|u\|^{2}=\langle u, u\rangle$, distances $\|u-v\|$, angles $\cos (u, v)=\langle u, v\rangle /(\|u\|\|v\|)$.
- Any other scalar product on \mathbb{R}^{d} is defined by $\langle u, v\rangle_{G}=u^{T} G v=\left(G^{1 / 2} u\right)^{T}\left(G^{1 / 2} v\right)$, with $G \succ 0$ defines the metric
- Note that whenever $G \succ 0, H=G^{-1} \succ 0$ also defines a metric
- On a manifold \mathcal{M}, at each $p \in \mathcal{M}$ we have a different G_{p}
- The function $g(p)=G_{p}$ is called the Riemannian metric

All (intrinsic) geometric quantities on \mathcal{M} involve g

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

- Length of curve γ

$$
I(\gamma)=\int_{a}^{b} \sqrt{\sum_{i j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}} d t
$$

- Under a change of parametrization, g changes in a way that leaves geometric quantities invariant

Calculating distances in the manifold \mathcal{M}

Original

Isomap

Laplacian Eigenmaps

Embedding	$\left\\|f(p)-f\left(p^{\prime}\right)\right\\|$	Shortest Path	Metric \hat{d}	Rel. error
Original data	1.41	1.57	1.62	3.0%
Isomap $m=2$	1.66	1.75	1.63	3.7%
LTSA $m=2$	0.07	0.08	1.65	4.8%
LE $m=2$	0.08	0.08	1.62	3.1%
curve $\gamma \approx\left(y_{0}, y_{1}, \ldots y_{K}\right)$ path in graph				

geodesic distance $\hat{d}=\sum_{k=0}^{K} \sqrt{\left(y_{k}-y_{k-1}\right)^{T} \frac{G\left(y_{k}\right)+G\left(y_{k-1}\right)}{2}\left(y_{k}-y_{k-1}\right)}$

G for Sculpture Faces

- $n=698$ gray images of faces in $D=64 \times 64$ dimensions
- head moves up/down and right/left

Problem: Estimate the g associated with ϕ

- Given:
- data set $\mathcal{D}=\left\{p_{1}, \ldots p_{n}\right\}$ sampled from Riemannian manifold $\left(\mathcal{M}, g_{0}\right), \mathcal{M} \subset \mathbb{R}^{D}$
- embedding $\left\{y_{i}=\phi\left(p_{i}\right), p_{i} \in \mathcal{D}\right\}$ by e.g DiffusionMap, Isomap, LTSA, ...
- Estimate $G_{i} \in \mathbb{R}^{m \times m}$ the pushforward Riemannian metric at $p_{i} \in \mathcal{D}$ in the embedding coordinates ϕ
- The embedding $\left\{y_{1: n}, G_{1: n}\right\}$ will preserve the geometry of the original data

Relation between g and Δ

- $\Delta=$ Laplace-Beltrami operator on \mathcal{M}
- $\Delta=\operatorname{div} \cdot \operatorname{grad}$
- on $C^{2}, \Delta f=\sum_{j} \frac{\partial^{2} f}{\partial \xi_{j}^{2}}$
- on weighted graph with similarity matrix S, and $t_{p}=\sum_{p p^{\prime}} S_{p p^{\prime}}, \Delta=\operatorname{diag}\left\{t_{p}\right\}-S$
- $\Delta=$ Laplace-Beltrami operator on \mathcal{M}
- G Riemannian metric (in coordinates)
- $H=G^{-1}$ matrix inverse

(Differential geometric fact)

$$
\Delta f=\sqrt{\operatorname{det}(H)} \sum_{l} \frac{\partial}{\partial x^{\prime}}\left(\frac{1}{\sqrt{\operatorname{det}(H)}} \sum_{k} H_{1 k} \frac{\partial}{\partial x^{k}} f\right)
$$

- L the renormalized Laplacian estimates Δ (very well studied \checkmark)

Let Δ be the Laplace-Beltrami operator on $\mathcal{M}, H=G^{-1}$, and $k, I=1,2, \ldots d$.

$$
\left.\frac{1}{2} \Delta\left(\phi_{k}-\phi_{k}(p)\right)\left(\phi_{l}-\phi_{l}(p)\right)\right|_{\phi_{k}(p), \phi_{l}(p)}=H_{k l}(p)
$$

Intuition:

- Δ applied to test functions $f=\phi_{k}^{\text {centered }} \phi_{l}^{\text {centered }}$
- this produces $H(p)$ in the given coordinates
- consistent estimation of Δ is well studied [Coifman\&Lafon 06,Hein\&al 07]

Metric Manifold Learning algorithm

Given dataset \mathcal{D}
(1) Preprocessing (construct neighborhood graph, ...)
(2) Find an embedding ϕ of \mathcal{D} into \mathbb{R}^{m}
(3) Estimate discretized Laplace-Beltrami operator L
(9) Estimate H_{p} and $G_{p}=H_{p}^{\dagger}$ for all p
(1) For $i, j=1$: m,
$H^{i j}=\frac{1}{2}\left[L\left(\phi_{i} * \phi_{j}\right)-\phi_{i} *\left(L \phi_{j}\right)-\phi_{j} *\left(L \phi_{i}\right)\right]$
where $X * Y$ denotes elementwise product of two vectors $X, Y \in \mathbb{R}^{N}$
(2) For $p \in \mathcal{D}, H_{p}=\left[H_{p}^{i j}\right]_{i j}$
(3) For $p \in \mathcal{D},(V, \Sigma) \leftarrow \operatorname{SVD}\left(H_{p}, d\right)$ and $G_{p}=V \Sigma^{-1} V^{T}=H_{p}^{\dagger}$ (rank d (pseudo)inverse of H_{p}) Output $\left(\phi_{p}, G_{p}\right)$ for all p

Manifold Learning

- Metric preserving manifold learning - Riemannian manifolds basics

Estimating the Riemannian metric

Algorithm MetricEmbedding

Input data \mathcal{D}, m embedding dimension, ϵ resolution

1. Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
2. Construct similary matrix

$$
S_{p p^{\prime}}=e^{-\frac{1}{\epsilon^{2}}\left\|p-p^{\prime}\right\|^{2}} \text { iff } p, p^{\prime} \text { neighbors, } S=\left[S_{p p^{\prime}}\right]_{p, p^{\prime} \in \mathcal{D}}
$$

3. Construct (renormalized) Laplacian matrix [Coifman \& Lafon 06]

$$
3.1 t_{p}=\sum_{p^{\prime} \in \mathcal{D}} S_{p p^{\prime}}, T=\operatorname{diag} t_{p}, p \in \mathcal{D}
$$

$$
3.2 \underset{\sim}{\tilde{S}}=T^{-1} S T_{\tilde{\sim}}^{-1}
$$

$$
3.3 \tilde{t}_{p}=\sum_{\sim} p_{p^{\prime} \in \mathcal{D}} \tilde{S}_{p p^{\prime}}, \tilde{T}=\operatorname{diag} \tilde{t}_{p}, p \in \mathcal{D}
$$

$$
3.4 P=\tilde{T}^{-1} \tilde{S}
$$

$$
3.5 L=(I-P) / \epsilon^{2}
$$

4. Embedding $\left.\left[\phi_{p}\right]_{p \in \mathcal{D}}=\operatorname{EmbedDingAlg(\mathcal {D}}, m\right)$
5. Estimate embedding metric H_{p} at each point
denote $Z=X * Y, X, Y \in \mathbb{R}^{N}$ iff $Z_{i}=X_{i} Y_{i}$ for all i
5.1 For $i, j=1: m, H^{i j}=\frac{1}{2}\left[L\left(\phi_{i} * \phi_{j}\right)-\phi_{i} *\left(L \phi_{j}\right)-\phi_{j} *\left(L \phi_{i}\right)\right]$ (column vector)
5.2 For $p \in \mathcal{D}, \tilde{H}_{p}=\left[H_{p}^{i j}\right]_{i j}$ and $H_{p}=\tilde{H}_{p}^{\dagger}$

Ouput $\left(\phi_{p}, H_{p}\right)_{p \in \mathcal{D}}$

Computational cost

$n=|\mathcal{D}|, D=$ data dimension, $m=$ embedding dimension
(1) Neighborhood graph +
(2) Similarity matrix $\mathcal{O}\left(n^{2} D\right)$ (or less)
(3) Laplacian $\mathcal{O}\left(n^{2}\right)$
(9) EmbeddingAlg e.g. $\mathcal{O}\left(m n^{2}\right)$ (eigenvector calculations)

- Embedding metric
- $\mathcal{O}\left(n m^{2}\right)$ obtain g^{-1} or h^{\dagger}
- $\mathcal{O}\left(n m^{3}\right)$ obtain g or h
- Steps 1-3 are part of many embedding algorithms
- Steps 3-5 independent of ambient dimension D
- Matrix inversion/pseudoinverse can be performed only when needed

Metric Manifold Learning summary

Why useful

- Measures local distortion induced by any embedding algorithm
$G_{i}=I_{d}$ when no distortion at p_{i}
- Corrects distortion
- Integrating with the local volume/length units based on G_{i}
- Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable Applications
- Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]
- Helps with estimation of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco])
- selecting eigencoordinates [Chen, M NeurIPS19]

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4. Metric preserving manifold learning - Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

What graph? Radius-neighbors vs. k nearest-neighbors

- k-nearest neighbors graph: each node has degree k
- radius neighbors graph: p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\| \leq r$
- Does it matter?
- Yes, for estimating the Laplacian and distortion
- Why? [Hein 07, Coifman 06, Ting 10, ...] k-nearest neighbor Laplacians do not converge to Laplace-Beltrami operator Δ
- but to $\Delta+2 \nabla(\log p) \cdot \nabla$ (bias due to non-uniform sampling)

K-nearest neighbor radius neighbor
configurations of ethanol $d=2$

Effect of re-normalization

Choosing ϵ

- Every manifold learning algorithm starts with a neighborhood graph
- Parameter ϵ
- is neighborhood radius
- and/or kernel banwidth
- recall $\kappa\left(p, p^{\prime}\right)=e^{-\frac{\left\|p-p^{\prime}\right\|^{2}}{\epsilon^{2}}}$ if $\left\|p-p^{\prime}\right\|^{2} \leq c \epsilon$ and 0 otherwise $(c \in[1,10])$

ϵ too small

ϵ too large

Methods for choosing ϵ

- Theoretical (asymptotic) result $\sqrt{\epsilon} \propto n^{-\frac{1}{d+6}}$ [Singer06]

In practice:

- Visual inspection?
- Cross-validation ?
- only if related to prediction task
- [Chen\&Buja09] heuristic for k-nearest neighbor graph
- unsupervised
- depends on embedding method used
- optimizes consistency of k-nn graph in data and embedding
- k-nearest neighbor graph has different convergence properties than ϵ neighborhood
- Geometric Consistency heuristic [Perrault-Joncas\&Meila17]
- unsupervised
- optimizes Laplacian, does not require embedding
- computes "isometry" in 2 different ways and minimizes distortion between them

Geometric Consistency (GC): Idea

- Idea: choose ϵ so that geometry encoded by L_{ϵ} is closest to data geometry

- For given ϵ and data point p
(1) Project neighbors of p onto tangent subspace
- local embedding around p
- approximately isometric to original data
(2) Calculate Laplacian $L(\epsilon)$ at p and estimate distortion $H_{\epsilon, p}$
- $H_{\epsilon, p}$ must be $\approx I_{d}$ identity matrix

The distortion measure

Input: data set \mathcal{D}, dimension $d^{\prime} \leq d$, scale ϵ
(1) Estimate Laplacian $L(\epsilon)$ and weights $w_{i}(\epsilon)$ with Laplacian
(2) Project data on tangent plane at p

- For each p
- Let neigh $p_{p, \epsilon}=\left\{p^{\prime} \in \mathcal{D},\left\|p^{\prime}-p\right\| \leq c \epsilon\right\}$ where $c \in[1,10]$
- Calculate (weighted) local PCA wLPCA(neigh $_{p, \epsilon}, d^{\prime}$) (with weights $w_{i}(\epsilon)$)
- Calculate coordinates z_{i} in PCA space for points in neigh ${ }_{p, \epsilon}$
(3) Estimate $H_{\epsilon, p} \in \mathbb{R}^{d^{\prime} \times d^{\prime}}$ by RMETRIC
- For each p
- Use row p of $L(\epsilon)$
- z_{i} 's play the role of ϕ
((Compute squared Loss over all p's $\operatorname{Loss}(\epsilon)=\sum_{p \in \mathcal{D}}\left\|H_{\epsilon, p}-I_{d}\right\|_{2}^{2}$ Output Loss (ϵ)
- Select $\epsilon^{*}=\operatorname{argmin}_{\epsilon} \operatorname{Loss}(\epsilon)$
- $d^{\prime} \leq d$ (more robust)
- minimize by 0 -th order optimization (faster than grid search)

Example ϵ and distortion for aspirin

- Each point $=$ a configuration of the aspirin molecule
- Cloud of point in $D=47$ dimensions embedded in $m=3$ dimensions
- (only 1 cluster shown)

Bonus: Intrinsic Dimension Estimation in noise

- Geometric consistency + eigengap method of [Chen,Little,Maggioni,Rosasco,2011]
(1) do local PCA for a range of ϵ values
(2) choose appropriate radius ϵ (by Geometric consistency)
(3) dimension $=$ largest eigengap between λ_{k} and λ_{k+1} at radius ϵ (proof by Chen\&al) ("largest" $=$ most frequent largest over a sample)
$\operatorname{Loss}(\epsilon)$ vs. ϵ

Singular values of LPCA vs. ϵ

Example: Intrinsic Dimension Estimation results

Summary

- what distance measure?
- what graph? [Maier, von Luxburg, Hein 2009]
- what kernel width ϵ ? [Perrault-Joncas,M,McQueen NIPS17]
- what intrinsic dimension d? [Chen,Little,Maggioni,Rosasco] and variant by [Perrault-Joncas,M,McQueen NIPS17]
- what embedding dimension $s \geq d$? [Chen,M,NeurIPS19]

ML Algorithm: DiffMAPs, LTSA

- Cluster [M,Shi 00],[M,Shi 01]. . . [M NeurIPS18]
- Estimate/correct distortion: Metric Learning and Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Validate d, s, [select eigenvectors] [Chen, M NeurIPS19]
- Topological Data Analysis (TDA)
- Meaning of coordinates [M,Koelle,Zhang, 2018,2022]
- Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M, Kevrekidis 2021]
- Finding ridges and saddle points (in progress)

