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Manifold Learning

About these course notes
• This is the “handout” version of the course slides.
• In the actual course, most differential geometric concepts are defined informally.
• These notes include more formal definitions for these concepts, to help you ground them in

mathematics.
• I have also included some simple but illuminating extra proofs; some proofs are given as

exercises for the reader.
• Linear algebra concepts (like SVD, � 0 matrix) or other math/stat/CS concepts used

generically in machine learning are not defined.
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What is manifold learning good for?

What is manifold learning good for?

Principal Component Analysis (PCA). What is it good for?
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What is manifold learning good for?

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

www.sdss.org

Preprocessed by Jacob VanderPlas and Grace Telford

n = 675, 000 spectra ×D = 3750 dimensions

embedding by James McQueen
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What is manifold learning good for?

Molecular configurations

aspirin molecule Data from Molecular Dynamics (MD) simulations of small
molecules by [Chmiela et al. 2016]

n ≈ 200, 000 configurations ×D ∼ 20− 60 dimensions
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What is manifold learning good for?

When to do (non-linear) dimension reduction

n = 698 gray images of faces in

D = 64× 64 dimensions

head moves up/down and
right/left
With only two degrees of
freedom, the faces define a 2D
manifold in the space of all
64× 64 gray images

high-dimensional data p ∈ RD , D = 64× 64
can be described by a small number d of continuous parameters
large sample size n
understanding more important than prediction
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Manifolds, Coordinate Charts and Smooth Embeddings

Manifold. Basic definitions

manifold

chart

atlas

d is called intrinsic dimension of M
If the original data p ∈ RD , call D the ambient dimension.
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Manifold Learning

Manifolds, Coordinate Charts and Smooth Embeddings

Manifold. Basic definitions

Manifold. Mathematical definitions

Definition 1 (Smooth Manifold (?))

• A d-dimensional manifold M is a topological (Hausdorff) space such that every point has a

neighborhood homeomorphic to an open subset of Rd .
• A coordinate chart (U, x) of manifold M is an open set U ⊂M together with a

homeomorphism x : U → V of U onto an open subset V ⊂ Rd = {(x1, ..., xd ) ∈ Rd}.
• A C∞-atlas A is a collection of charts, A ≡ ∪α∈I{(Uα, xα)} where I is an index set, such

that M = ∪α∈IUα and for any α, β ∈ I the corresponding transition map

xβ ◦ x−1
α : xα(Uα ∩ Uβ)→ Rd is continuously differentiable any number of times.

• Notation: p ∈ U −→ x(p) = (x1(p), ..., xd (p)).
• The mappings {x} are not uniquely defined. This is a problem for comparing results of

manifold estimation algorithms
• Generally, a manifold needs more than one chart. This is not a severe problem, and can be

circumvented as we will see next. For simplicity, we will talk only about a single chart from
now on.



Manifolds, Coordinate Charts and Smooth Embeddings

Intrinsic dimension. Tangent subspace
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Manifold Learning

Manifolds, Coordinate Charts and Smooth Embeddings

Intrinsic dimension. Tangent subspace

Intrinsic dimension. Tangent subspace
• Denote by φ : V ⊆ Rd → U ⊆M the inverse of coordinate chart x . A smooth curve γ on
M is defined as the image by φ of a smooth curve γ̃ in V. A smooth curve admits a tangent
at every interior point.

• The tangent subspace of M at p ∈ M, denoted TpM is defined as the set of all tangents
at p to smooth curves curves on M that pass through point p.

dim TpM = d

• If φ :M→ R is a scalar function on M, then its gradient at p, denoted ∇f (p), is a vector
in TpM.

• exterior derivative
• geodesic distance
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Manifold Learning

Manifolds, Coordinate Charts and Smooth Embeddings

Intrinsic dimension. Tangent subspace

Tangents to curves – detail
The Chain Rule f = h ◦ g ⇔ f (x) = h(g(x))

where φ : (−1, 1) → U ⊂ RD , g : (−1, 1) →
V ⊂ Rd , h : V → U

d

dt
f = dh

d

dt
g (1)

Where d
dt f ∈ RD , d

dt g ∈ Rd , dh = [ ∂h
i

∂xj
]j=1:d
i=1:D is

the Jacobian of h

(Smooth) Curve γ̄ : (−1, 1) → Rd iff

γ̄ j : (−1, 1)→ R are smooth functions,
for j = 1 : d . γ̄(t) is point on curve at
t.

• Smooth curve on M: γ = φ ◦ γ̄, γ(t) = φ(γ̄1(t), . . . γ̄d (t))

• Hence dγ
dt = dφ · dγ̄

dt
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Manifold Learning

Manifolds, Coordinate Charts and Smooth Embeddings

Intrinsic dimension. Tangent subspace

An example, I
• M is unit sphere in R3, coordinatex x, y , z
• U is top patch of M. How to map U to V ⊂ R2?

1. We find the inverse mapping φ : V → U
2. Let V be a the interior of a circle, coordinates (x1, x2) , point (0, 0, 1) ∈ U maps to

(0.0) ∈ V .

3. Let r2 = (x1)2 + (x2)2, and map it to the arc distance from (0, 0, 1) to p = (x, y , z).
Then

x = x1 sin r
y = x2 sin r
z = 1− cos r

4. Let’s compute the derivatives (by chain rule)

∂r

∂x1
=

x1

r

∂x

∂x1
= sin r +

(x1)2

r
cos r

∂r

∂x2
=

x2

r

∂x

∂x2
=

x1x2

r
cos r

∂z

∂x1
=

x1

r
sin r

∂y

∂x1
=

x1x2

r
cos r

∂z

∂x2
=

x2

r
sin r

∂y

∂x2
= sin r +

(x2)2

r
cos r
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Manifold Learning

Manifolds, Coordinate Charts and Smooth Embeddings

Intrinsic dimension. Tangent subspace

• Now let γ̄ : (−ε, ε)→ V be the curve γ̄(t) = [t t]T . Hence dγ̄
dt = [1 1]T

• The tangent vector in p = (0, 0, 1) is dγ
dt (0, 0) = dφ dγ̄

dt with coordinates

dγ

dt
(0, 0) =

 sin r + (x1)2+x1x2

r cos r

sin r + (x2)2+x1x2

r cos r

sin r x1+x2

r

 (2)



Manifolds, Coordinate Charts and Smooth Embeddings

Embeddings

One can circumvent using multiple charts by mapping the data into m > d dimensions.
Let φ :M→ Rm be a smooth function, and let N = φ(M).
φ is an embedding if the inverse φ−1 : N →M exists and is differentiable (a
diffeormorphism).

Whitney’s Embedding Theorem (?) states that any d-dimensional smooth manifold can be
embedded into R2d .
Hence, if d � D, very significant dimension reductions can be achieved with a single map
φ :M→ Rm.
Manifold learning algorithms aim to construct maps φ like the above from finite data
sampled from M.
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Manifold Learning

Manifolds, Coordinate Charts and Smooth Embeddings

Embeddings

Let M, N be two manifolds, and φ :M→N be a C∞ (i.e smooth) map between them.
At each point p ∈ M, the Jacobian dφp of φ at p defines a linear mapping between TpM, and
the tangent subspace to N at φ(p) Tφ(p)N .

Definition 2 (Rank of a Smooth Map)

A smooth map φ :M→N has rank k if the Jacobian dφp : TpM→ Tφ(p)N of the map has
rank k for all points p ∈ M. Then we write rank (φ) = k.

Definition 3 (Embedding)

Let M and N be smooth manifolds and let φ :M→N be a smooth injective map, that is
rank(φ) = dim(M), then φ is called an immersion. If M is homeomorphic to its image under φ,
then φ is an embedding of M into N .



Manifolds, Coordinate Charts and Smooth Embeddings

Examples of manifolds and coordinate charts
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Manifolds, Coordinate Charts and Smooth Embeddings

Examples of manifolds and coordinate charts

Not manifolds

dimension not constant
unions of manifolds that intersect
sharp corners (non-smooth)
many/most neural network embeddings
manifolds can have border
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Non-linear dimension reduction algorithms

Outline

1 What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms
Local PCA
PCA, Kernel PCA, MDS recap
Principal Curves and Surfaces (PCS)
Embedding algorithms
Heuristic algorithms

4 Metric preserving manifold learning – Riemannian manifolds basics
Embedding algorithms introduce distortions
Metric Manifold Learning – Intuition
Estimating the Riemannian metric

5 Neighborhood radius and other choices
What graph? Radius-neighbors vs. k nearest-neighbors
What neighborhood radius/kernel bandwidth?
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Non-linear dimension reduction algorithms

Non-linear dimension reduction: Three principles

Algorithm given D = {ξ1, . . . ξn} from M⊂ RD , map them by Algorithm f to
{y1, . . . yn} ⊂ Rm

Assumption if points from M, n→∞, f is embedding of M
(f “recovers” M of arbitrary shape).

1 Local (weighted) PCA (lPCA)
2 Principal Curves and Surfaces (PCS)
3 Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian

Eigenmaps,. . . )

4 [Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

Intrinsic dimension d
must be estimated (we assume we know it) (Lecture 3)
sample complexity is exponential in d – NONPARAMETRIC (upcoming)

non-uniform sampling
volume of M (we assume volume finite; larger volume requires more samples)
injectivity radius/reach of M (next page)

curvature

ESSENTIAL smoothness parameter: the neighborhood radius (Lecture 3)
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Non-linear dimension reduction algorithms

Parametric vs. non-parametric

An example of density estimation with data x1:n ∈ R.

1 Gaussian N(µ, σ2) parametric.

µ̂ = 1
n

∑n
i=1 xi , σ̂

2 = 1
n−1

∑n
i=1(xi − µ̂)2

Error µ− µ̂ has mean 0 and standard deviation σµ̂ = σ√
n
∝ n−1/2

To increase accuracy ×10, n must increase ×102 = 100

2 Kernel density estimation (KDE), non-parametric

ph(x) =
1

n

n∑
i=1

1

h
κ

(
xi − x

h

)

κ = N(0, 1) the kernel, h > 0 is the kernel width

Accuracy for KDE ∝ n−2/5

To increase accuracy ×10, n must increase ×105/2 ≈ 316

distribution to decrease err. by 10
Model e.g. shape error rate we need samples ×
Parametric N(µ, σ2)) fixed n−1/2 n × 102 100

Non-parametric KDE in R any n−2/5 n × 105/2 316

KDE in Rd any n−2/(d+4) n × 10(d+4)/2 1000 (d = 2)
3163 (d = 3)
10,000 (d = 4)
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Non-linear dimension reduction algorithms

Neighborhood graphs

All ML algorithms start with a neighborhood graph over the data points
neighi denotes the neighbors of ξi , and ki = | neighi |.
Ξi = [ξi′ ]i′∈neighi

∈ RD×ki contains the coordinates of ξi ’s neighbors

In the radius-neighbor graph, the neighbors of ξi are the points within distance r from ξi ,
i.e. in the ball Br (ξi ).
In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of ξi .

k-nn graph has many computational advantages
constant degree k (or k − 1)
connected for any k > 1
more software available

but much more difficult to use for consistent estimation of manifolds (see later, and )

data ξ1, . . . ξn ⊂ RD neighborhood graph A (sparse) matrix of
distances between neighbors
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Non-linear dimension reduction algorithms Local PCA

Local Principal Components Analysis (LPCA)

Idea Approximate M with tangent subspaces at a finite number of data points
1 Pick a point ξi ∈ D
2 Find neighi , perform PCA on neighi ∪{ξi} and obtain (affine) subspace with basis Ti ∈ RD×d

3 Represent ξi′ ∈ neighi by yi = ProjTi
ξi′

yi′ = TT
i (ξi′ − ξi ) new coordinates of ξi′ in TξiM (3)

Repeat for a sample of n′ < n data points
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Non-linear dimension reduction algorithms Local PCA

Local PCA

For n, n′ sufficiently large, M can be approximated with arbitrary accuracy

So, are we done?
Some issues with LPCA
Point ξj may be represented in multiple Ti ’s (minor)
New coordinates yj are relative to local Ti

Fine for local operations like regression
Number of charts depends on extrinsic properties
Cumbersome for larger scale operations like following a curve on M
Biased in noise
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Non-linear dimension reduction algorithms PCA, Kernel PCA, MDS recap

Multi-dimensional scaling (MDS)

(See notes for PCA, Kernel PCA, centering matrix H, MDS for details)

Problem Given matrix of (squared) distances D ∈ Rn×n, find a set of n points in d
dimensions Y = d × n so that

DY = [‖yi − yj‖2]i,j ≈ D

Useful when
original points are not vectors but we can compute distances (e.g string edit distances, philogenetic
distances)
original points are in high dimensions
original distances are geodesic distances on a manifold M

MDS Algorithm

1 Calculate K = − 1
2
HDHT

2 Compute its d principal e-vectors/values: K = VΣ2VT

3 Y = ΣVT are new coordinates

The Centering Matrix H

H = I −
1

n
1n×n

Q: Could MDS be an embedding algorithm? What is different about MDS and upcoming
algorithms?
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Non-linear dimension reduction algorithms

PCA, Kernel PCA, MDS recap

Multi-dimensional scaling (MDS)

Principal Component Analysis

• Data matrix X = (D × n) each column a data vector

• XXT is covariance matrix (unnormalized; must be centered!)

• SVD(X , d) = UΣV T keep only d principal eigenvectors, and d largest e-values
U = d × D basis vectors

• Y = UTX = ΣV T = d × n low dimensional representation of data
• UUTX = reconstruction of X (D dimensional, rank d)

• Encoding a new x ∈ RD : y = UT x

PCA Dual algorithm

• more efficient when D � n
• Compute XTX = K Gram matrix (or kernel matrix)

• EIG(K , d) = VΣ2V T keep only d principal eigenvectors, and largest d e-values

• Y = UTX = ΣV T = d × n low dimensional representation of data (U not computed
unless we want to reconstruct x data)



Multi-dimensional scaling (MDS)

(See notes for PCA, Kernel PCA, centering matrix H, MDS for details)

Problem Given matrix of (squared) distances D ∈ Rn×n, find a set of n points in d
dimensions Y = d × n so that

DY = [‖yi − yj‖2]i,j ≈ D

Useful when
original points are not vectors but we can compute distances (e.g string edit distances, philogenetic
distances)
original points are in high dimensions
original distances are geodesic distances on a manifold M

MDS Algorithm

1 Calculate K = − 1
2
HDHT

2 Compute its d principal e-vectors/values: K = VΣ2VT

3 Y = ΣVT are new coordinates
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H = I −
1
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Non-linear dimension reduction algorithms

PCA, Kernel PCA, MDS recap

PCA in two ways

• Kernel PCA
• when data x mapped to high-dimensional feature space Φ(X )
• 〈Φ(x),Φ(x′)〉 = κ(x, x′) (positive definite) kernel
• Gram matrix (Kernel matrix) K ← [κ(xi , xj )]ni,j=1

• κ(x, x′) is tractable to compute

(Ex: Gaussian kernel κ(x, x′) = exp(−||x − x′||2/h2))

• Dual PCA ⇒ Y = ΣV T = d × n (tractable!)
• What if data in Φ space not centered?

• The Centering Matrix H

H = I −
1

n
1n×n

• Substracts the mean of a vector
• Properties of H: H symmetric, H2 = H, H1 = 0, Ha = ac (centered vector), HXT = XT

c

(centers all columns of XT )



Multi-dimensional scaling (MDS)

(See notes for PCA, Kernel PCA, centering matrix H, MDS for details)

Problem Given matrix of (squared) distances D ∈ Rn×n, find a set of n points in d
dimensions Y = d × n so that

DY = [‖yi − yj‖2]i,j ≈ D

Useful when
original points are not vectors but we can compute distances (e.g string edit distances, philogenetic
distances)
original points are in high dimensions
original distances are geodesic distances on a manifold M

MDS Algorithm

1 Calculate K = − 1
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HDHT

2 Compute its d principal e-vectors/values: K = VΣ2VT

3 Y = ΣVT are new coordinates
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Non-linear dimension reduction algorithms

PCA, Kernel PCA, MDS recap

Kernel PCA

Exercise 1

Properties of the centering matrix H Let a ∈ Rn be a vector, µa the mean of the elements of a,

ac = a − µa1[ ] the centered vector a. (4)

Prove that a. H is symmetric, and idempotent H2 = H.
b. H1 = 0
c. Ha = ac
d. Show that H has an eigenvalue σ1 = 0. What is the e-vector for σ1?
e. The eigenvalues of H are σ1 = 0, σ2:n = 1. Characterize the e-vector space for σ2:n.
f. Let X ∈ Rn×D a matrix with rows equal to data points in D dimensions. Prove that Xc = HX
is a matrix whose rows (as data points) have 0 mean.

g. Let K = XXT be a kernel matrix, and Kc = XcX
T
c . Prove that Kc = HKH.



Multi-dimensional scaling (MDS)

(See notes for PCA, Kernel PCA, centering matrix H, MDS for details)

Problem Given matrix of (squared) distances D ∈ Rn×n, find a set of n points in d
dimensions Y = d × n so that

DY = [‖yi − yj‖2]i,j ≈ D

Useful when
original points are not vectors but we can compute distances (e.g string edit distances, philogenetic
distances)
original points are in high dimensions
original distances are geodesic distances on a manifold M
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1 Calculate K = − 1
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HDHT

2 Compute its d principal e-vectors/values: K = VΣ2VT
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Non-linear dimension reduction algorithms

PCA, Kernel PCA, MDS recap

Kernel PCA

• Problem Given matrix of (squared) distances A ∈ Rn×n, find a set of n points in d
dimensions Y so that

DY = [‖yi − yj‖2]i,j ≈ D

• Optimization problem min
Y∈Rd×n ‖D − DY ‖2

F with ‖D − DY ‖2
F =

∑
ij (dij − ‖yi − yj‖2)2

• Solution

1. Relation with Gram matrix (of centered data): Kc = −1/2HDHT where H is the
centering matrix!

2. Hence, optimization equivalent to min
Y∈Rd×n

∑
ij (κ(xi , xj )− yT

i yj )
2

3. This is the same as rank d approximation to K !
MDS has same solution Y as PCA if D contains Euclidean distances



Multi-dimensional scaling (MDS)

(See notes for PCA, Kernel PCA, centering matrix H, MDS for details)

Problem Given matrix of (squared) distances D ∈ Rn×n, find a set of n points in d
dimensions Y = d × n so that

DY = [‖yi − yj‖2]i,j ≈ D

Useful when
original points are not vectors but we can compute distances (e.g string edit distances, philogenetic
distances)
original points are in high dimensions
original distances are geodesic distances on a manifold M

MDS Algorithm

1 Calculate K = − 1
2
HDHT

2 Compute its d principal e-vectors/values: K = VΣ2VT

3 Y = ΣVT are new coordinates

The Centering Matrix H

H = I −
1

n
1n×n

Q: Could MDS be an embedding algorithm? What is different about MDS and upcoming
algorithms?
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Non-linear dimension reduction algorithms

PCA, Kernel PCA, MDS recap

Multi-dimensional scaling (MDS)

Exercise 2

MDS and Kernel PCA Prove that Kc = − 1
2 HDH.



Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

Principal Curves and Surfaces (PCS)

??

Elegant algorithm , most useful for d = 1 (curves)
Also works in noise ??

data in RD near a curve (or set of curves)
Goal: track the ridge of the data density (will be biased estimator of curve M)
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

What is a density ridge

Peak

∇p = 0
∇2p ≺ 0

Saddle

∇p = 0
∇2p has λ1 > 0, λ2:D < 0

Ridge

∇p = 0 in span{v2:D}
∇2p has λ2:D < 0, (v1:D e-vectors ∇2p)

In other words, on a ridge

∇p ∝ v1 direction of least negative curvature (LNC) of ∇2p
∇p, v1 are tangent to the ridge
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

Gradient and Hessian for Gaussian KDE

Data ξ1:n ∈ RD

Let p() be the kernel density estimator with some kernel width h.

p(ξ) =
1

nhd

n∑
i=1

κ(
ξ − ξi

h
) =

1

nhd

n∑
i=1

exp

(
−

(ξ − ξi )2

2h2

)
/ωd (5)

We prefer to work with ln p which has the same critical points/ridges as p
∇ ln p = 1

p
∇p = g

∇2 ln p = − 1
p2∇p∇pT + 1

p
∇2p = H

g(ξ) = −
1

h2
[ξ−

n∑
i=1

ξi exp

(
−

(ξ − ξi )2

2h2

)
/

n∑
i=1

exp

(
−

(ξ − ξi )2

2h2

)
︸ ︷︷ ︸

wi

] = −
1

h2
[ξ −m(ξ)︸ ︷︷ ︸
Mean−shift

] (6)

H(ξ) =
∑n

i=1 wiuiu
T
i − g(ξ)g(ξ)T − 1

h2 I
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

SCMS Algorithm

SCMS = Subspace Constrained Mean Shift

Init any ξ1 Density estimated by p =data ? Gaussian kernel of width h
for k = 1, 2, . . .

1 calculate gk ∝ ∇ ln p(ξk ) by Mean-Shift O(nD)
2 Hk = ∇2 ln p(ξk ) O(nD2)
3 compute v1 principal e-vector of Hk O(D2)
4 ξk+1 ← ξk + Proj

v⊥
1

gk O(D)

until convergence

Algorithm SCMS finds 1 point on ridge; n restarts to cover all density

Run time ∝ nD2/iteration
Storage ∝ D2
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

Principal curves found by SCMS

LBFGS=accelerated, approximate SCMS – coming next!
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

Accelerating SCMS

reduce dependency on n per iteration
ignore points far away from ξ
use approximate nearest neighbors (clustering, KD-trees,. . . )

reduce number of SCMS runs: start only from n′ < n points

reduce number iterations: track ridge instead of cold restarts

project ∇p on v1 instead of v⊥1
tracking ends at critical point (peak or saddle)

reduce dependence on D
approximate v1 without computing whole H
D2 ← mD with m ≈ 5
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Non-linear dimension reduction algorithms

Principal Curves and Surfaces (PCS)

Accelerating SCMS

• Given g ∝ ∇p(x)

• Wanted Proj
v⊥
1

g = (I − v1v
T
1 )g

• Need v1

principal e-vector of H = ∇2(ln p) for λ1 = largest e-value of H
without computing/storing H

• First Idea use LBFGSS to approximate H−1 by ˆH−1 of rank 2m [Nocedal & Wright ]

• Run time ∝ Dm + m2 / iteration (instead of nD2)

• Storage ∝ 2mD for {ξk−l − ξk−l−1}l=1:m, {gk−l − gk−l−1}l=1:m

• Problem: v1 too inaccurate to detect stopping

• Second idea

1. store {ξk−l − ξk−l−1}l=1:m ∪ {gk−l − gk−l−1}l=1:m = V
• span V approximates principal subspace of H
2. minimize vTHv s.t. v ∈ span V where H is exact Hessian

• Possible because H =
∑

wiuiu
T
i − ggT − 1

h2 I with w1:n, u1:n computed during Mean-Shift

• Run time ∝ n′Dm + m2 / iteration (instead of nD2)
• Storage ∝ 2mD
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Non-linear dimension reduction algorithms

Principal Curves and Surfaces (PCS)

(Approximate) SCMS step without computing Hessian

Exercise 3

Subspace constrained principal e-vector Let H ∈ RD×D be a symmetric matrix, and V ∈ RD×m

an orthogonal matrix defining a subspace. We want to obtain

argmax
v∈span V ,‖v‖=1

vTHv the principal e-vector constrained to V . (7)

a. Prove that v can be obtained by calculating the principal e-vector of a symmetric m×m matrix
W . Hint: v = Vu with u ∈ Rm for any v ∈ span V .
b. What is W for the Hessian H used in SCMS? and what is the dimension of W in this case?



Non-linear dimension reduction algorithms Embedding algorithms

Non-linear dimension reduction algorithms summary

Paradigm Input Output f (new ξ) f −1(new p)

local PCA ξ1:n ∈ RD y1:n ∈ Rd local maps X ?
(many)

Principal Curves ξ1:n ∈ RD ξ′1:n ∈ RD global map X N/A
SCMS (if data kept)

Embedding ξ1:n ∈ RD y1:n ∈ Rm global map ad-hoc or ad-hoc or
Algorithm or ∈ Rd local maps interpolation interpolation
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Non-linear dimension reduction algorithms Embedding algorithms

Embedding algorithms

Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,. . .

Map D to Rm where m ≥ d (global coordinates)
Can also map a local neighborhood U ⊆ D to Rd (local, intrinsic coordinates)

Input
embedding dimension m
neighborhood radius/kernel width ε

usually radius r ≈ 3× ε
neighborhood graph
{neighi , Ξi , for i = 1 : n}
A = [‖ξi − ξj‖]ni,j=1 distance matrix, with Aij =∞ if i 6∈ neighj
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Non-linear dimension reduction algorithms Embedding algorithms

The Isomap algorithm

Isomap Algorithm [Tennenbaum, deSilva & Langford 00]

Input A, dimension d
1 Find all shortest path distances in neighborhood graph

if Aij =∞, then Aij ← graph distance between i , j
2 Construct matrix of squared distances

M = [(Aij )
2]

3 use Multi-Dimensional Scaling MDS(M, d) to obtain d dimensional coordinates Y for D

Works also for m > d
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Non-linear dimension reduction algorithms Embedding algorithms

The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix A ∈ Rn×n , bandwidth ε, embedding dimension m
1 Compute Laplacian L ∈ Rn×n

2 Compute eigenvectors of L for smallest m + 1 eigenvalues [φ0 φ1 . . . φm] ∈ Rn×m

φ0 is constant and not informative

The embedding coordinates of pi are (φi1, . . . φis)
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Non-linear dimension reduction algorithms Embedding algorithms

The (renormalized) Laplacian

Laplacian

Input distance matris A ∈ Rn×n, bandwidth ε

1 Compute similarity matrix Sij = exp

(
−

A2
ij

ε2

)
= κ(Aij/ε)

2 Normalize columns dj =
∑n

i=1 Sij , L̃ij = Sij/dj
3 Normalize rows d ′i =

∑n
j=1 L̃ij , Pij = L̃ij/d

′
i

4 L = 1
ε2 (I − P)

5 Output L, d ′i /di

Laplacian L central to understanding the manifold geometry
limn→∞ L = ∆M [Coifman,Lafon 2006]

Renormalization trick cancels effects of (non-uniform) sampling density [Coifman & Lafon 06]

Other Laplacians
Lun = diag {d1:n} − A unnormalized Laplacian
Lrw = I − diag {d1:n}−1A random walk Laplacian
Ln = I − diag {d1:n}−1/2Adiag {d1:n}−1/2 normalized Laplacian
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Non-linear dimension reduction algorithms

Embedding algorithms

The (renormalized) Laplacian

Exercise 4

Renormalized Laplacian a. Show that L1[] = 0 for the renormalized Laplacian. Hence L always has
a 0 e-value.

Exercise 5 (Unnormalized Laplacian)

Let Lun = D − A be the unnormalized Laplacian of graph defined by A. Prove that
xTLunx =

∑
(i,j)∈E (xi − xj )

2 for any x ∈ Rn.

Exercise 6 (Double Normalization Laplacian)

A more standard presentation of the Re-normalized Laplacian is this:

1. Compute similarity matrix S
2. First normalization di =

∑n
j=1 Sij , L̃ij = Sij/didj (symmetric matrix)

3. Second normalization d′i =
∑n

j=1 L̃ij , Pij = L̃ij/d
′
i (asymmetric)

4. L = 1
ε2 (I − P)

Show that this L is the same as in the algorithm on the previous page.



Non-linear dimension reduction algorithms Embedding algorithms

Isomap vs. Diffusion Maps

Isomap

Preserves geodesic distances
but only when M is flat and “data” convex

Computes all-pairs shortest paths O(n3)
Stores/processes dense matrix

DiffusionMap

Distorts geodesic distances
Computes only distances to nearest
neighbors O(n1+ε)
Stores/processes sparse matrix

t-SNE, UMAP visualization algorithms
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Non-linear dimension reduction algorithms Heuristic algorithms

Heuristic algorithms

Local Linear Embedding (LLE)
one of the first embedding algorithms
later analysis showed that LLE has no limit when n→∞
closest modern version is Local Tangent Space Alignment (LTSA)

t-Stochastic Neighbor Embedding (t-SNE)
Input similarity matrix S, embedding dimension s

Init choose embedding points y1:n ∈ Rs at random
1 Sii ← 0, normalize rows di =

∑
j Sij , Pij = Sij/di

2 symmetrize P = 1
2n (P + PT ) P is distribution over pairs of neighbors (i, j)

3 S̃ij = κ̃(‖yi − yj‖)compute similarity in output space
where κ̃(z) = 1

1+z2 the Cauchy (Student t with 1 degree of freedom)

4 Define distribution Q with Qij ∝ Sij

5 Change yi :n to decrease the Kullbach-Leibler divergence KL(P||Q) =
∑

i,j Pij ln
Pij
Qij

(by gradient

descent) and repeat from step 3

t-SNE is empirically useful for visualizing clusters
t-SNE is proved to create artefacts
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Non-linear dimension reduction algorithms Heuristic algorithms

UMAP: Uniform Manifold Approximation and Projection [McInnes, Healy,

Melville,2018]

Input k number nearest neighbors, d ,
1 Find k-nearest neighbors
2 Construct (asymmetric) similarities wij , so that

∑
j wij = log2 k. W = [wij ].

3 Symmetrize S = W + WT −W . ∗WT is similarity matrix.
4 Initialize embedding φ by LaplacianEigenmaps.
5 Optimize embedding.

Iteratively for niter steps
1 Sample an edge ij with probability ∝ exp−dij
2 Move φi towards φj

3 Sample a random j′ uniformly
4 Move φi away from φj′

Stochastic approximate logistic regression of ||φi − φj || on dij .

Output φ
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Non-linear dimension reduction algorithms Heuristic algorithms

Embedding algorithms summary

Many different algorithms exist
All start from neighborhood graph and distance matrix A
Most use e-vectors of a tranformation of A (preserve the sparsity pattern)

DiffusionMaps – can separate manifold shape from sampling density
LTSA – “correct” at boundaries
Isomap – best for flat manifolds with no holes, small data

Most embeddings sensitive to
choice of radius ε (within “correct” range)
sampling density p
neighborhoods K-nn vs. radius

i.e. most embeddings introduce distortions
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Non-linear dimension reduction algorithms Heuristic algorithms

Manifold Learning as a sandwich

what distance measure?
what graph? [Maier,von Luxburg, Hein 2009]

what kernel width ε? [Perrault-Joncas,M,McQueen

NIPS17]

what intrinsic dimension d?
[Chen,Little,Maggioni,Rosasco ] and variant by
[Perrault-Joncas,M,McQueen NIPS17]

what embedding dimension s ≥ d? [Chen,M,NeurIPS19]

ML Algorithm: DiffMaps, LTSA
Cluster [M,Shi 00],[M,Shi 01]. . . [M NeurIPS18]

Estimate/correct distortion: Metric Learning and
Riemannian Relaxation [McQueen, M, Perrault-Joncas

NIPS16]

Validate d , s, [select eigenvectors] [Chen, M NeurIPS19]

Topological Data Analysis (TDA)
Meaning of coordinates [M,Koelle,Zhang, 2018,2022]

Manifolds with vector fields [Perrault-Joncas, M, 2013,

Chen, M, Kevrekidis 2021]

Finding ridges and saddle points (in progress)
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Metric preserving manifold learning – Riemannian manifolds basics

Outline

1 What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms
Local PCA
PCA, Kernel PCA, MDS recap
Principal Curves and Surfaces (PCS)
Embedding algorithms
Heuristic algorithms

4 Metric preserving manifold learning – Riemannian manifolds basics
Embedding algorithms introduce distortions
Metric Manifold Learning – Intuition
Estimating the Riemannian metric

5 Neighborhood radius and other choices
What graph? Radius-neighbors vs. k nearest-neighbors
What neighborhood radius/kernel bandwidth?
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Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Hessian Eigenmaps (HE)

Laplacian Eigenmaps (LE)

Local Linear Embedding (LLE)

Isomap

Local Tangent Space Alignment
(LTSA)
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Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Failures vs. distortions

Distortion vs failure
φ distorts if distances, angles, density not preserved, but φ smooth and invertible
If φ does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
Examples: points ξi , ξj are not neighbors in M but are neighbors in φ(M), or viceversa (hence φ is
not invertible, or not continuous)

Most common modes of failure
distance matrix A does not capture topology (artificial “holes” or “bridges”)
usually becasuse kernel width ε too small or too large
choice of e-vectors
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Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Artefacts

Artefacts=features of the embedding that do not exist in the data (clusters, holes, “arms”,
“horseshoes”)

What to beware of when you compute an embedding
algorithms that claim to choose ε automatically
confirming the embedding is “correct” by visualization: tends to over-smooth, i.e. ε over-estimated
K-nn (default in sk-learn!) instead of radius-neighbors: tends to create clusters
large variations in density: subsample data to make it more uniform
“horseshoes”: choose other e-vectors (φ is almost singulare)

Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural
networks
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Metric preserving manifold learning – Riemannian manifolds basics

Embedding algorithms introduce distortions

Artefacts

Exercise 7

Independent coordinates and artefacts for long strips, a,b
a. Generate a rectangle with a hole. Generate the following sets of points on 2D grids.

dimension grid spacing number points
left side [0, 1]× [0, 1] 0.05 441
middle [1.01, 2]× [0, 0.3] 0.01 100× 31 = 3100
middle [1.01, 2]× [0.7, 1.] 0.01 100× 31 = 3100
right side [2.05, 3]× [0, 1] 0.05 420
D [0, 3]× [0, 1] 7081

Plot the data to verify that it is a rectangle with a rectangular hole. The density of the grid is not
uniform. In all plots from here on, color the points by their original y coordinate. Ensure that the
dot size is small enough for clarity (size 1 or less recommended).
b. Let D consist of all the points in a.. Set the kernel width ε = 0.05 and the [optional]
neighborhood radius r = 0.15001 (i.e. just over 0.15). Calculate for these data

• A the distance matrix (can be a dense matrix)
• S the similarity matrix (can be a dense matrix)

• Lrw = I − D−1S the random walks Laplacian
• L the renormalized Laplacian

Display these matrices as square images with an appropriate color scale (don’t forget to show the
scale with each plot).
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Metric preserving manifold learning – Riemannian manifolds basics

Embedding algorithms introduce distortions

Artefacts

Exercise 8

Independent coordinates and artefacts for long strips - c,d,e,f
c. Compute φ0:9 the principal e-vectors 0 : 9 for L and discard φ0 the constant vector. Display φ1:9

as a pairwise plot. Ensure that the dot size is small enough for clarity (size 1 or less recommended).
d. From the plot in c. choose a pair of coordinates φ1, φk that produces the embedding visually
closest to the original rectangle. While there is some subjectivity in this choice, embeddings that
are “almost dimension 1”, or with self-crossings are NOT close to the original data.
e. Repeat c,d with Lrw , denoting its e-vectors ψ0:9.
f. Embed D with Isomap (OK to use outsourced code) and plot the data in the embedding
coordinates y1, y2.



Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Preserving topology vs. preserving (intrinsic) geometry

Algorithm maps data p ∈ RD −→ φ(p) = x ∈ Rm

Mapping M −→ φ(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

Mapping φ is isometry
preserves distances along curves in M, angles, volumes
For most algorithms, in most cases, φ is not isometry

Preserves topology Preserves topology + intrinsic geometry
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Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Theoretical results in isometric embedding

Positive results
General theory
Nash’s Theorem: Isometric embedding is possible.
Diffusion Maps embedding is isometric in the limit
[Berard,Besson,Gallot 94],[Portegies:16]

Special cases
Isomap [Bernstein, Langford, Tennenbaum 03]
recovers flat manifolds isometrically
LE/DM recover sphere, torus with equal radii
(sampled uniformly)

Follows from consistency of Laplacian
eigenvectors [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10, Gine &
Koltchinskii 06]

Negative results

Obvious negative examples
No affine recovery for normalized Laplacian
algorithms [Goldberg&al 08]

Empirically, most algorithms
preserve neighborhoods (=topology)
distort distances along manifold (=geometry)
distortions occur even in the simplest cases
distortion persists when n →∞
one cause of distortion is variations in sampling
density p; [Coifman& Lafon 06] introduced
Diffusion Maps (DM) to eliminate these
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

Metric Manifold Learning

Wanted
eliminate distortions for any “well-behaved” M
and any any “well-behaved” embedding φ(M)
in a tractable and statistically grounded way

Idea
Given data D ⊂M, some embedding φ(D) that preserves topology
(true in many cases)

Estimate distortion of φ and correct it!
The correction is called the pushforward Riemannian Metric g
The distortion is the dual pushforward Riemannian Metric h
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Corrections for 3 embeddings of the same data

Isomap LTSA

Laplacian Eigenmaps
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Metric preserving manifold learning – Riemannian manifolds basics

Metric Manifold Learning – Intuition

Corrections for 3 embeddings of the same data

Definition 4 (Riemannian Metric)

The Riemannian metric g defines an inner product <,>g on the tangent space TpM for every
p ∈ M.

Definition 5 (Riemannian Manifold)

A Riemannian manifold (M, g) is a smooth manifold M with a Riemannian metric g defined at
every point p ∈ M.

• p point on M
• TpM = tangent subspace at p

at each p ∈ M, g defines quadratic form Gp

< v ,w >= vTGpw for v ,w ∈ TpM and for p ∈ M

– g is symmetric and positive definite tensor field
– g also called first fundamental form

In coordinates at each point p ∈ M, Gp is a positive definite matrix of rank d



Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

What is a (Riemannian) metric?

In Euclidean space Rd , the scalar product 〈u, v〉 = uT v
From the scalar product we derive norms ‖u‖2 = 〈u, u〉, distances ‖u − v‖, angles
cos(u, v) = 〈u, v〉/(‖u‖‖v‖).
Any other scalar product on Rd is defined by 〈u, v〉G = uTGv = (G1/2u)T (G1/2v), with
G � 0 defines the metric
Note that whenever G � 0, H = G−1 � 0 also defines a metric

On a manifold M, at each p ∈M we have a different Gp

The function g(p) = Gp is called the Riemannian metric
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All (intrinsic) geometric quantities on M involve g

Volume element on manifold

Vol(W ) =

∫
W

√
det(g)dx1 . . . dxd .

Length of curve γ

l(γ) =

∫ b

a

√√√√∑
ij

gij
dx i

dt

dx j

dt
dt,

Under a change of parametrization, g changes in a way that leaves geometric quantities
invariant
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

Calculating distances in the manifold M

Original Isomap Laplacian Eigenmaps

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)− f (p′)|| Path d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap m = 2 1.66 1.75 1.63 3.7%
LTSA m = 2 0.07 0.08 1.65 4.8%

LE m = 2 0.08 0.08 1.62 3.1%
curve γ ≈ (y0, y1, . . . yK ) path in graph

geodesic distance d̂ =
K∑

k=0

√
(yk − yk−1)T

G(yk ) + G(yk−1)

2
(yk − yk−1)
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

G for Sculpture Faces

n = 698 gray images of faces in D = 64× 64 dimensions

head moves up/down and right/left

LTSA Algoritm
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Metric preserving manifold learning – Riemannian manifolds basics Estimating the Riemannian metric

Problem: Estimate the g associated with φ

Given:
data set D = {p1, . . . pn} sampled from Riemannian manifold (M, g0), M ⊂ RD

embedding { yi = φ(pi ), pi ∈ D }
by e.g DiffusionMap, Isomap, LTSA, . . .

Estimate Gi ∈ Rm×m the pushforward Riemannian metric at pi ∈ D
in the embedding coordinates φ

The embedding {y1:n,G1:n} will preserve the geometry of the original data
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Metric preserving manifold learning – Riemannian manifolds basics Estimating the Riemannian metric

Relation between g and ∆

∆ = Laplace-Beltrami operator on M
∆ = div · grad
on C 2, ∆f =

∑
j
∂2 f

∂ξ2
j

on weighted graph with similarity matrix S, and tp =
∑

pp′ Spp′ , ∆ = diag { tp} − S

∆ = Laplace-Beltrami operator on M
G Riemannian metric (in coordinates)
H = G−1 matrix inverse

(Differential geometric fact)

∆f =
√

det(H)
∑
l

∂

∂x l

(
1√

det(H)

∑
k

Hlk
∂

∂xk
f

)
,

L the renormalized Laplacian estimates ∆ (very well studied X)
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Estimation of G−1

Let ∆ be the Laplace-Beltrami operator on M, H = G−1, and k, l = 1, 2, . . . d .

1

2
∆(φk − φk (p)) (φl − φl (p))|φk (p),φl (p) = Hkl (p)

Intuition:

∆ applied to test functions f = φcenteredk φcenteredl
this produces H(p) in the given coordinates
consistent estimation of ∆ is well studied [Coifman&Lafon 06,Hein&al 07]
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Metric Manifold Learning algorithm

Given dataset D
1 Preprocessing (construct neighborhood graph, ...)
2 Find an embedding φ of D into Rm

3 Estimate discretized Laplace-Beltrami operator L
4 Estimate Hp and Gp = H†p for all p

1 For i, j = 1 : m,
H ij = 1

2 [L(φi ∗ φj )− φi ∗ (Lφj )− φj ∗ (Lφi )]
where X ∗ Y denotes elementwise product of two vectors X, Y ∈ RN

2 For p ∈ D, Hp = [H ij
p ]ij

3 For p ∈ D, (V ,Σ)← SVD(Hp, d) and Gp = VΣ−1V T = H†p (rank d (pseudo)inverse of Hp)

Output (φp ,Gp) for all p
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Metric preserving manifold learning – Riemannian manifolds basics

Estimating the Riemannian metric

The case m > d

Algorithm MetricEmbedding

Input data D, m embedding dimension, ε resolution
1. Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
2. Construct similary matrix

Spp′ = e
− 1
ε2 ||p−p′||2

iff p, p′ neighbors, S = [Spp′ ]p,p′∈D
3. Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

3.1 tp =
∑

p′∈D Spp′ , T = diag tp, p ∈ D
3.2 S̃ = T−1ST−1

3.3 t̃p =
∑

p′∈D S̃pp′ , T̃ = diag t̃p, p ∈ D
3.4 P = T̃−1S̃
3.5 L = (I − P)/ε2

4. Embedding [φp ]p∈D = EmbeddingAlg(D, m)
5. Estimate embedding metric Hp at each point

denote Z = X ∗ Y , X ,Y ∈ RN iff Zi = XiYi for all i
5.1 For i, j = 1 : m, H ij = 1

2 [L(φi ∗ φj )− φi ∗ (Lφj )− φj ∗ (Lφi )] (column vector)

5.2 For p ∈ D, H̃p = [H ij
p ]ij and Hp = H̃†p

Ouput (φp,Hp)p∈D



Metric preserving manifold learning – Riemannian manifolds basics Estimating the Riemannian metric

Computational cost

n = |D|, D = data dimension,m= embedding dimension

1 Neighborhood graph +
2 Similarity matrix O(n2D) (or less)
3 Laplacian O(n2)
4 EmbeddingAlg e.g. O(mn2) (eigenvector calculations)
5 Embedding metric

O(nm2) obtain g−1 or h†

O(nm3) obtain g or h

Steps 1–3 are part of many embedding algorithms
Steps 3–5 independent of ambient dimension D
Matrix inversion/pseudoinverse can be performed only when needed
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Metric Manifold Learning summary

Why useful

Measures local distortion induced by any embedding algorithm
Gi = Id when no distortion at pi
Corrects distortion

Integrating with the local volume/length units based on Gi

Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]

Algorithm independent geometry preserving method
Outputs of different algorithms on the same data are comparable

Applications
Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]

Helps with estimation of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco ])
selecting eigencoordinates [Chen, M NeurIPS19]
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Neighborhood radius and other choices

Outline

1 What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms
Local PCA
PCA, Kernel PCA, MDS recap
Principal Curves and Surfaces (PCS)
Embedding algorithms
Heuristic algorithms

4 Metric preserving manifold learning – Riemannian manifolds basics
Embedding algorithms introduce distortions
Metric Manifold Learning – Intuition
Estimating the Riemannian metric

5 Neighborhood radius and other choices
What graph? Radius-neighbors vs. k nearest-neighbors
What neighborhood radius/kernel bandwidth?
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Neighborhood radius and other choices What graph? Radius-neighbors vs. k nearest-neighbors

What graph? Radius-neighbors vs. k nearest-neighbors

k-nearest neighbors graph: each node has degree k
radius neighbors graph: p, p′ neighbors iff ||p − p′|| ≤ r

Does it matter?

Yes, for estimating the Laplacian and distortion
Why? [Hein 07, Coifman 06, Ting 10, . . . ] k-nearest neighbor Laplacians do not converge to
Laplace-Beltrami operator ∆
but to ∆ + 2∇(log p) · ∇ (bias due to non-uniform sampling)

K-nearest neighbor
radius neighbor
configurations of ethanol d = 2
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Neighborhood radius and other choices What graph? Radius-neighbors vs. k nearest-neighbors

Effect of re-normalization

Ln simply normalized
L renormalized

Marina Meilă (UW) Manifold Learning 19-20 May, 2022 62 / 72



Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Choosing ε

Every manifold learning algorithm starts with a neighborhood graph
Parameter ε

is neighborhood radius
and/or kernel banwidth

recall κ(p, p′) = e
− ||p−p′||2

ε2 if ||p − p′||2 ≤ cε and 0 otherwise (c ∈ [1, 10])

ε too small ε too large
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Methods for choosing ε

Theoretical (asymptotic) result
√
ε ∝ n−

1
d+6 [Singer06]

In practice:
Visual inspection?
Cross-validation ?

only if related to prediction task

[Chen&Buja09] heuristic for k-nearest neighbor graph
unsupervised
depends on embedding method used
optimizes consistency of k-nn graph in data and embedding
k-nearest neighbor graph has different convergence properties than ε neighborhood

Geometric Consistency heuristic [Perrault-Joncas&Meila17]

unsupervised
optimizes Laplacian, does not require embedding
computes “isometry” in 2 different ways and minimizes distortion between them
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Geometric Consistency (GC): Idea

Idea: choose ε so that geometry encoded by Lε is closest to data geometry

For given ε and data point p
1 Project neighbors of p onto tangent subspace

local embedding around p
approximately isometric to original data

2 Calculate Laplacian L(ε) at p and estimate distortion Hε,p
Hε,p must be ≈ Id identity matrix
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

The distortion measure

Input: data set D, dimension d ′ ≤ d , scale ε
1 Estimate Laplacian L(ε) and weights wi (ε) with Laplacian
2 Project data on tangent plane at p

For each p
Let neighp,ε = {p′ ∈ D, ‖p′ − p‖ ≤ cε} where c ∈ [1, 10]

Calculate (weighted) local PCA wLPCA(neighp,ε, d
′) (with weights wi (ε))

Calculate coordinates zi in PCA space for points in neighp,ε

3 Estimate Hε,p ∈ Rd′×d′ by RMetric
For each p
Use row p of L(ε)
zi ’s play the role of φ

4 Compute squared Loss over all p’s Loss(ε) =
∑

p∈D ||Hε,p − Id ||22
Output Loss(ε)

Select ε∗ = argminεLoss(ε)

d ′ ≤ d (more robust)
minimize by 0-th order optimization (faster than grid
search)
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Example ε and distortion for aspirin

Each point = a configuration of the aspirin molecule
Cloud of point in D = 47 dimensions embedded in m = 3 dimensions
(only 1 cluster shown)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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Stable state

dim = 1, * = 2.54
dim = 2, * = 2.15
dim = 3, * = 2.40
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Bonus: Intrinsic Dimension Estimation in noise

Geometric consistency + eigengap method of [Chen,Little,Maggioni,Rosasco,2011]

1 do local PCA for a range of ε values
2 choose appropriate radius ε (by Geometric consistency)
3 dimension = largest eigengap between λk and λk+1 at radius ε (proof by Chen&al)

(“largest” = most frequent largest over a sample)

Loss(ε) vs. ε Singular values of LPCA vs. ε
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Example: Intrinsic Dimension Estimation results
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Summary

what distance measure?
what graph? [Maier,von Luxburg, Hein 2009]

what kernel width ε? [Perrault-Joncas,M,McQueen NIPS17]

what intrinsic dimension d? [Chen,Little,Maggioni,Rosasco ] and
variant by [Perrault-Joncas,M,McQueen NIPS17]

what embedding dimension s ≥ d? [Chen,M,NeurIPS19]

ML Algorithm: DiffMaps, LTSA
Cluster [M,Shi 00],[M,Shi 01]. . . [M NeurIPS18]

Estimate/correct distortion: Metric Learning and Riemannian
Relaxation [McQueen, M, Perrault-Joncas NIPS16]

Validate d , s, [select eigenvectors] [Chen, M NeurIPS19]

Topological Data Analysis (TDA)
Meaning of coordinates [M,Koelle,Zhang, 2018,2022]

Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M,

Kevrekidis 2021]

Finding ridges and saddle points (in progress)
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