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About these course notes

e This is the “handout” version of the course slides.

e In the actual course, most differential geometric concepts are defined informally.

e These notes include more formal definitions for these concepts, to help you ground them in
mathematics.

e | have also included some simple but illuminating extra proofs; some proofs are given as
exercises for the reader.

e Linear algebra concepts (like SVD, > 0 matrix) or other math/stat/CS concepts used
generically in machine learning are not defined.
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@ What is manifold learning good for?
Manifolds, Coordinate Charts and Smooth Embeddings
o g

© Non-linear dimension reduction algorithms
@ Local PCA
e PCA, Kernel PCA, MDS recap
@ Principal Curves and Surfaces (PCS)
@ Embedding algorithms
@ Heuristic algorithms

@ Metric preserving manifold learning — Riemannian manifolds basics
o Embedding algorithms introduce distortions
o Metric Manifold Learning — Intuition
@ Estimating the Riemannian metric

© Neighborhood radius and other choices
o What graph? Radius-neighbors vs. k nearest-neighbors
@ What neighborhood radius/kernel bandwidth?
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@ What is manifold learning good for?
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What is manifold learning good for?

o Principal Component Analysis (PCA). What is it good for?
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Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)
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@ Preprocessed by Jacob VanderPlas and Grace Telford
@ n = 675,000 spectra x D = 3750 dimensions
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Molecular configurations

aspirin molecule

@ Data from Molecular Dynamics (MD) simulations of small
molecules by [Chmiela et al. 2016]
e n = 200,000 configurations x D ~ 20 — 60 dimensions

s aspirin3,3 vs 8.2

stable meta-stable

transition
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When to do (non-linear) dimension reduction

@ n = 698 gray images of faces in
D = 64 x 64 dimensions

o head moves up/down and
right/left

o With only two degrees of
freedom, the faces define a 2D
manifold in the space of all
64 X 64 gray images
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Manifolds, Coordinate Charts and Smooth Embeddings
o g
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Manifold. Basic definitions

e manifold
o chart

atlas

d is called intrinsic dimension of M
If the original data p € RP, call D the ambient dimension.
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Manifold. Basic definitions

Manifold. Mathematical definitions

Definition 1 (Smooth Manifold (?))

e A d-dimensional manifold M is a topological (Hausdorff) space such that every point has a
neighborhood homeomorphic to an open subset of RY.

o A coordinate chart (U, x) of manifold M is an open set U C M together with a
homeomorphism x : U — V of U onto an open subset V € R? = {(x!,...,x?) € RY}.

e A C*-atlas A is a collection of charts, A = Uye/{(Ua, %o )} where [ is an index set, such
that M = U,e Uy and for any «, B € | the corresponding transition map
Xxg 0 x;l : Xa(Ua NUG) — R? is continuously differentiable any number of times.

e Notation: p € U — x(p) = (x'(p), ..., x¢(p))-

e The mappings {x} are not uniquely defined. This is a problem for comparing results of
manifold estimation algorithms

e Generally, a manifold needs more than one chart. This is not a severe problem, and can be
circumvented as we will see next. For simplicity, we will talk only about a single chart from
now on.



Intrinsic dimension. Tangent subspace

coordinate
curves
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Intrinsic dimension. Tangent subspace

Intrinsic dimension. Tangent subspace

Denote by ¢ : V C R? — U C M the inverse of coordinate chart x. A smooth curve ~ on
M is defined as the image by ¢ of a smooth curve 4 in V. A smooth curve admits a tangent
at every interior point.

The tangent subspace of M at p € M, denoted T, M is defined as the set of all tangents
at p to smooth curves curves on M that pass through point p.

dim T,M = d

If ¢ : M — R is a scalar function on M, then its gradient at p, denoted Vf(p), is a vector
in T, M.

exterior derivative

geodesic distance

coordinate
curves
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Tangents to curves — detail

Intrinsic dimension. Tangent subspace

The Chain Rule f = ho g & f(x) = h(g(x))
where ¢ : (-1,1) — U C RP, g : (-1,1) —
VCR?Y h:V = U

e anl (1)
dae = Va®

Where %f € RP, %g € RY, dh = [ah’ i=ld

oxd 1i=1:D
the Jacobian of h

(Smooth) Curve 7 : (—1,1) — RY iff

4 : (—1,1) — R are smooth functions,
for j =1:d. 5(t) is point on curve at
t.

e Smooth curve on M: v = ¢ 0 7, v(t) = &(F'(2), . .. 79(t))

dy _ o
e Hence T =dg¢ -
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Intrinsic dimension. Tangent subspace

An example, |

e M is unit sphere in R?, coordinatex x, v,z
e U is top patch of M. How to map U to V C R??

1.
2

3.

We find the inverse mapping ¢ : V. — U
Let V be a the interior of a circle, coordinates (xl,xz) , point (0,0,1) € U maps to
(0.0) € V.
Let r? = (x')? 4 (x?)?, and map it to the arc distance from (0,0, 1) to p = (x, y, 2).
Then

x = x'sinr

y = xsinr

z =1—cosr

. Let’s compute the derivatives (by chain rule)
or Xt ox . (x)?
-y ﬁfsmrJr cos r
ar x2 ox x1x?
=2 — = cos r
Ox? r Ox? r
oz xt dy x1x?
—— = —sinr — = cos r
Oxt r Oxt r
0z x? Ay (x?)?

—— = —sinr —— =sinr +

Ox? r Ox?

cos r
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Intrinsic dimension. Tangent subspace

o Now let 5 : (—e, €) — V be the curve 5(t) = [t t]". Hence dd—? = )"

e The tangent vector in p = (0,0, 1) is 9(0,0) = d¢ 2T with coordinates
1,2 1.2
dy sinr + w cosr

2,2 1.2
7(0:0): sinr 4 RO cog
3 xL4x2

sinr 7
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Embeddings

One can circumvent using multiple charts by mapping the data into m > d dimensions.
Let ¢ : M — R™ be a smooth function, and let N = ¢(M).

¢ is an embedding if the inverse ¢~! : N’ — M exists and is differentiable (a
diffeormorphism).

Whitney’s Embedding Theorem (?) states that any d-dimensional smooth manifold can be
embedded into R?9.

Hence, if d < D, very significant dimension reductions can be achieved with a single map
¢: M —R™M.

Manifold learning algorithms aim to construct maps ¢ like the above from finite data
sampled from M.
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Embeddings

Let M, N be two manifolds, and ¢ : M — N be a C*° (i.e smooth) map between them.
At each point p € M, the Jacobian d¢, of ¢ at p defines a linear mapping between T, M, and
the tangent subspace to NV at ¢(p) Ty (p) N

Definition 2 (Rank of a Smooth Map)

A smooth map ¢ : M — N has rank k if the Jacobian d¢, : T,M — Ty, of the map has
rank k for all points p € M. Then we write rank (¢) = k.

Definition 3 (Embedding)

Let M and N be smooth manifolds and let ¢ : M — A be a smooth injective map, that is
rank(¢) = dim(M), then ¢ is called an immersion. If M is homeomorphic to its image under ¢,
then ¢ is an embedding of M into A/.




Examples of manifolds and coordinate charts
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Examples of manifolds and coordinate charts

Not manifolds

dimension not constant

unions of manifolds that intersect
sharp corners (non-smooth)
many/most neural network embeddings
manifolds can have border
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© Non-linear dimension reduction algorithms

Local PCA

PCA, Kernel PCA, MDS recap
Principal Curves and Surfaces (PCS)
Embedding algorithms

Heuristic algorithms
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Non-linear dimension reduction: Three principles

000

(%]

Algorithm given D = {£1,...£,} from M C RP, map them by Algorithm f to
{y11 B -yn} CR™

Assumption if points from M, n — oo, f is embedding of M

(f "recovers” M of arbitrary shape).

Local (weighted) PCA (IPCA)

Principal Curves and Surfaces (PCS)

Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian
Eigenmaps,...)

[Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

Intrinsic dimension d
e must be estimated (we assume we know it (Lecture 3)
e sample complexity is exponential in d = NONPARAMETRIC (upcoming)

non-uniform sampling

volume of M (we assume volume finite; larger volume requires more samples)

injectivity radius/reach of M (next page)
curvature

ESSENTIAL smoothness parameter: the neighborhood radius (Lecture 3)

Marina Meild (UW) Manifold Learning 19-20 May, 2022 15 /72



Parametric vs. non-parametric

An example of density estimation with data x;., € R.
@ Gaussian N(u,o?) parametric.
o =150 % 0% = Ay X0 (x — )

o Error u — fi has mean 0 and standard deviation oy = o n~1/2

Bl

e To increase accuracy X 10, n must increase %102 = 100

@ Kernel density estimation (KDE), non-parametric
n

pr(x) = %Z :15 (XI;X>

i=1

e x = N(0, 1) the kernel, h > 0 is the kernel width
o Accuracy for KDE o n=2/%
o To increase accuracy X 10, n must increase x10%/2 ~ 316

distribution to decrease err. by 10
Model e.g. shape error rate we need samples x
Parametric N(p, 02)) fixed n—1/2 n x 102 100
Non-parametric KDE in R any n=2/5 n x 105/2 316
KDE in RY any n=2/(d+4)  px10(d+4)/2 1000 (d = 2)
3163 (d = 3)
10,000 (d = 4)
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Neighborhood graphs

e All ML algorithms start with a neighborhood graph over the data points
o neigh; denotes the neighbors of &;, and k; = | neigh; |.
° = = [gi’]f’eneighf € RP*ki contains the coordinates of &i's neighbors
o In the radius-neighbor graph, the neighbors of &; are the points within distance r from &;,
i.e. in the ball B,(&;).
o In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of &;.

@ k-nn graph has many computational advantages

o constant degree k (or k — 1)
e connected for any k > 1
e more software available

e but much more difficult to use for consistent estimation of manifolds (see later, and )

data &,...&, C RP neighborhood graph A (sparse) matrix of
distances between neighbors

Marina Meild (UW) Manifold Learning 19-20 May, 2022 17 /72



N ' P/
Local Principal Components Analysis (LPCA)

Idea Approximate M with tangent subspaces at a finite number of data points
@ Pick a point & € D
@ Find neigh;, perform PCA on neigh; U{¢;} and obtain (affine) subspace with basis T; € RP*9
© Represent {i/ € neigh; by y; = Projr, {i

yir = T (€4 — &) new coordinates of & in Te, M 3)

M’*\Q\ Repeat for a sample of n’ < n data points
!
A

Marina Meild (UW) Manifold Learning 19-20 May, 2022 18 /72



Local PCA

For n, n’ sufficiently large, M can be approximated with arbitrary accuracy

So, are we done?

Some issues with LPCA

Point &; may be represented in multiple T;'s (minor)

New coordinates y; are relative to local T;

Fine for local operations like regression

Number of charts depends on extrinsic properties

Cumbersome for larger scale operations like following a curve on M

Marina Meild (UW) Manifold Learning
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N © A Kemel PCA, MDS recap
Multi-dimensional scaling (MDS)

@ (See notes for PCA, Kernel PCA, centering matrix H, MDS for details)

@ Problem Given matrix of (squared) distances D € R"*", find a set of n points in d
dimensions Y = d X n so that

Dy = [llyi — yIPPlij = D

o Useful when
e original points are not vectors but we can compute distances (e.g string edit distances, philogenetic
distances)
o original points are in high dimensions
e original distances are geodesic distances on a manifold M

MDS Algorithm
@ Calculate K = —%HDHT

@ Compute its d principal e-vectors/values: K = V¥2VT
@ Y = XV7 are new coordinates

The Centering Matrix H

1
H = 1—=1nxn
n

Q: Could MDS be an embedding algorithm? What is different about MDS and upcoming
algorithms?
Marina Meils (UW) Manifold Learning 1020 May, 2022 20/72
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I—PCA, Kernel PCA, MDS recap
I—Multi—dimensional scaling (MDS)

Principal Component Analysis

Data matrix X = (D X n) each column a data vector
XX is covariance matrix (unnormalized; must be centered!)

SVD(X, d) = US VT keep only d principal eigenvectors, and d largest e-values
U = d X D basis vectors

Y = U'X =3V’ = d x n low dimensional representation of data

UUT X = reconstruction of X (D dimensional, rank d)

Encoding a new x € RP: y= UTx

PCA Dual algorithm

more efficient when D > n
Compute X7 X = K Gram matrix (or kernel matrix)
EIG(K, d) = V2V keep only d principal eigenvectors, and largest d e-values

Vo= =3¥VT = d x n low dimensional representation of data (U not computed
unless we want to reconstruct x data)
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PCA in two ways

Kernel PCA

when data x mapped to high-dimensional feature space ®(X)
((x), D(x")) = r(x,x") (positive definite) kernel

Gram matrix (Kernel matrix) K < [r(x;, %)} j_1

r(x, x") is tractable to compute

(Ex: Gaussian kernel x(x,x") = exp(—||x — x"||>/h?))

Dual PCA = Y =¥V = d x n (tractable!)

What if data in ® space not centered?

The Centering Matrix H
1
H = 1-—-1,xs
n

Substracts the mean of a vector

Properties of H: H symmetric, H> = H, H1 = 0, Ha = a, (centered vector), HXT = XCT

(centers all columns of XT)
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I—Kernel PCA

Exercise 1
Properties of the centering matrix H Let a € R" be a vector, j1, the mean of the elements of a,

ac = a— pal] j the centered vector a. (4)

Prove that a. H is symmetric, and idempotent H> = H.

b. H1=0

c. Ha = a.

d. Show that H has an eigenvalue o1 = 0. What is the e-vector for 017

e. The eigenvalues of H are o1 = 0, 02., = 1. Characterize the e-vector space for o.p.

f. Let X € R"*P a matrix with rows equal to data points in D dimensions. Prove that X. = HX
is a matrix whose rows (as data points) have 0 mean.

g Let K = XXT be a kernel matrix, and K. = XCXCT4 Prove that K. = HKH.
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e Pro
dim

Learning

L Kernel PCA

blem Given matrix of (squared) distances A € R"*", find a set of n points in d
ensions Y so that )
Dy ={llyi = yllI'lij = D

e Optimization problem miny cpdxn [|D — Dy||,2E ||D — Dny; = Zu(du — |lyi — yj||2)2
e Solution
1. Relation with Gram matrix (of centered data): K. = —1/2HDHT where H is the
centering matrix!
2. Hence, optimization equivalent to miny _paxn >_;(K(xi, X;) — v yi)?
3. This is the same as rank d approximation to K!

MDS has same solution Y as PCA if D contains Euclidean distances



2022-05-18

Manifold Learning
Non-linear dimension reduction algorithms
I_PCA, Kernel PCA, MDS recap
I—Multi—dimensional scaling (MDS)

Exercise 2

MDS and Kernel PCA Prove that K. = —%HDH.




N "cipa! Curves and Surfaces (PCS)
Principal Curves and Surfaces (PCS)

77

Elegant algorithm , most useful for d = 1 (curves)
@ Also works in noise ?7

data in RP near a curve (or set of curves)
o Goal: track the ridge of the data density (will be biased estimator of curve M)

Marina Meild (UW) Manifold Learning 19-20 May, 2022



Principal Curves and Surfaces (PCS)

What is a density ridge

Peak Saddle

/

/| N
i } 7 /A
Vp= Vp=0 Vp=0inspan{v.p}

V2p <0 V2p has A1 > 0, Ap.p < 0 V2p has Aa.p < 0, (vi:p e-vectors V2p)

In other words, on a ridge

@ Vp o v direction of least negative curvature (LNC) of V?p
@ Vp, v; are tangent to the ridge

Marina Meild (UW) Manifold Learning 19-20 May, 2022
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Gradient and Hessian for Gaussian KDE

o Data &;., € RP
o Let p() be the kernel density estimator with some kernel width h.
I~ -6 (E-¢&)2
PO = g Sor ) = hdz o (5250 s )
o We prefer to work with In p which has the same critical points/ridges as p
e Vinp= lVp =
e V2Inp = f—Vpr + 1V2p =

66) = ~ale-> 6o (- 52h§' ) See (N = o) ©
Mean —shift

H(&) = 327 1W,LI,U g(f)g(f)T w2
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SCMS Algorithm

SCMS = Subspace Constrained Mean Shift

Init any ¢! Density estimated by p =data * Gaussian kernel of width h
for k=1,2,...
@ calculate g¥ o« VIn p(&X) by Mean-Shift O(nD)
Q@ H* =V’Inp(g") O(nD?)
© compute vy principal e-vector of H¥ O(D?)
Q ¢« X+ Proj,s g o(D)

until convergence

@ Algorithm SCMS finds 1 point on ridge; n restarts to cover all density

o Run time o nD? /iteration
o Storage x D?
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Principal curves found by SCMS

~-SCMS ~-SCMS
LBFGS (NL ‘D', m=5) LBFGS (NL'D', m=5)

LBFGS=accelerated, approximate SCMS — coming next!
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Accelerating SCMS

@ reduce dependency on n per iteration

e ignore points far away from £
e use approximate nearest neighbors (clustering, KD-trees,. . .)

o reduce number of SCMS runs: start only from n’ < n points

@ reduce number iterations: track ridge instead of cold restarts

e project Vp on v; instead of v1L
o tracking ends at critical point (peak or saddle)
o reduce dependence on D

e approximate v; without computing whole H
o D? + mD with m~ 5

Marina Meild (UW) Manifold Learning
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I—Accelerating SCMS

Given g o Vp(x)
Wanted Proj | g = (/ — v )g
1

Need v;

principal e-vector of H = Vz(ln p) for A1 = largest e-value of H

without computing/storing H
First Idea use LBFGSS to approximate H~* by H—1 of rank 2m [Nocedal & Wright ]
Run time cc Dm + m? / iteration (instead of nD?)
Storage oc 2mD for {¢" = — k=171 L {g T — gl
Problem: vy too inaccurate to detect stopping

Second idea

1. store {€k=! — k=111 U {gh! — gk "1 pm = V
e span V approximates principal subspace of H
2. minimize v’ Hv s.t. v € span V where H is exact Hessian

Possible because H = > W,-u,-u,-T — ggT — lel with wi.p, u1., computed during Mean-Shift

Run time o n’ Dm + m? / iteration (instead of nD?)
Storage < 2mD
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I—Principal Curves and Surfaces (PCS)

I—(Approximate) SCMS step without computing Hessian

Exercise 3

Subspace constrained principal e-vector Let H € RPXP be a symmetric matrix, and V € RP*™
an orthogonal matrix defining a subspace. We want to obtain

argmax v Hv  the principal e-vector constrained to V. (7)
vEspan V, |v|=1

a. Prove that v can be obtained by calculating the principal e-vector of a symmetric m X m matrix
W. Hint: v = Vu with u € R™ for any v € span V.
b. What is W for the Hessian H used in SCMS? and what is the dimension of W in this case?

4




Non-linear dimension reduction algorithms summary

Paradigm Input Output f(new &) f~1(new p)
local PCA | &1, € RP | y1., € RY local maps v ?
(many)
Principal Curves | £1., € RP | €] € RP global map v N/A
SCMS (if data kept)
Embedding | &., € RP | yi., € R™ global map ad-hoc or ad-hoc or
Algorithm or € RY local maps interpolation interpolation

Marina Meild (UW)
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Embedding algorithms

Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,. . .

@ Map D to R™ where m > d (global coordinates)
e Can also map a local neighborhood U C D to R? (local, intrinsic coordinates)

Input
embedding dimension m
neighborhood radius/kernel width e

o usually radius r = 3 X €

@ neighborhood graph
{neigh;, =;, fori=1:n}
A= [ll& — &ll]7;—; distance matrix, with A; = oo if i & neigh;

Marina Meild (UW) Manifold Learning 19-20 May, 2022 29/72



The Isomap algorithm

Isomap Algorithm [Tennenbaum, deSilva & Langford 00]

Input A, dimension d

@ Find all shortest path distances in neighborhood graph
if Aj = oo, then Aj; < graph distance between i, j

@ Construct matrix of squared distances

M = [(Aj)’]

© use Multi-Dimensional Scaling MDS(M, d) to obtain d dimensional coordinates Y for D

@ Works also for m > d
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N - o<1 olgorihms
The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix A € R"*" | bandwidth €, embedding dimension m

© Compute Laplacian L € R"%"
@ Compute eigenvectors of L for smallest m + 1 eigenvalues [¢g ¢1 ... Pm] € R"XT

@ ¢g is constant and not informative

The embedding coordinates of p; are (¢i1,- - - Pis)

Marina Meild (UW) Manifold Learning 19-20 May, 2022



The (renormalized) Laplacian

Laplacian

0600 ©

Input distance matris A € R"X", bandwidth ¢
2

As
Compute similarity matrix S;; = exp (—6—3) = r(Ajj/€)
Normalize columns d; = 7, S;;, L;; = S;/d;
Normalize rows df = >°7 Ly, P =L;/d!
L=%(/-P)
Output L, d!/d;

Laplacian L central to understanding the manifold geometry
limp— oo L = Apq [Coifman,Lafon 2006]
Renormalization trick cancels effects of (non-uniform) sampling density [Coifman & Lafon 06]

Other Laplacians

L = diag {d1:n} — A unnormalized Laplacian
L™ = | — diag {d1.,} 1A random walk Laplacian
L"=1— diag{dl;,,}_l/QAdiag{dlz,,}_l/2 normalized Laplacian
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- Embedding algorithms

The (renormalized) Laplacian

Exercise 4

Renormalized Laplacian a. Show that L1 = 0 for the renormalized Laplacian. Hence L always has
a 0 e-value.

Exercise 5 (Unnormalized Laplacian)

Let L"" = D — A be the unnormalized Laplacian of graph defined by A. Prove that
xTLUnx = 2ijeexi — xj)? for any x € R".

Exercise 6 (Double Normalization Laplacian)

A more standard presentation of the Re-normalized Laplacian is this:
1. Compute similarity matrix S .
2. First normalization d; = 377, Sj, Lj = Sjj/d;d; (symmetric matrix)
3. Second normalization di = Y7, L, Py = L;/d] (asymmetric)
4. L=L(-P)
€

Show that this L is the same as in the algorithm on the previous page.




Isomap vs. Diffusion Maps

“ '.’ L i 7‘-;. “\\
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Isomap

@ Preserves geodesic distances
e but only when M is flat and “data” convex

o Computes all-pairs shortest paths O(n?)
@ Stores/processes dense matrix

o t-SNE, UMAP visualization algorithms

Marina Meild (UW)
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o Distorts geodesic distances

o Computes only distances to nearest
neighbors O(nl*€)

o Stores/processes sparse matrix
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Heuristic algorithms

Local Linear Embedding (LLE)

one of the first embedding algorithms

later analysis showed that LLE has no limit when n — oo

closest modern version is Local Tangent Space Alignment (LTSA)

o t-Stochastic Neighbor Embedding (t-SNE)
Input similarity matrix S, embedding dimension s
Init choose embedding points y1., € R® at random
@ S < 0, normalize rows d; = Z/ Sij, Pij = Sjj/d;
@ symmetrize P = (P + PT) P is distribution over pairs of neighbors (i, j)

@ 3 = &(|ly: — yj||)compute similarity in output space
where 7(z) = ﬁ the Cauchy (Student t with 1 degree of freedom)

@ Define distribution Q with Q; o Sj;
P
© Change i, to decrease the Kullbach-Leibler divergence KL(P||Q) = 3=, ; PjIn g (by gradient
” ij
descent) and repeat from step 3

e t-SNE is empirically useful for visualizing clusters
o t-SNE is proved to create artefacts
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UMAP: Uniform Manifold Approximation and Projection [Mclnnes, Healy,
Melville,2018]

[N =N - =N =}

Input k number nearest neighbors, d,
Find k-nearest neighbors
Construct (asymmetric) similarities w;;, so that >°; w; = logy k. W = [w;].
Symmetrize S = W + WT — W.x WT is similarity matrix.
Initialize embedding ¢ by LAPLACIANEIGENMAPS.
Optimize embedding.
Iteratively for njie, steps

@ Sample an edge ij with probability oc exp —dj;

@ Move ¢; towards ¢;

© Sample a random j uniformly

@ Move ¢; away from ¢/

Stochastic approximate logistic regression of ||¢; — ¢;|| on dj.

Output ¢
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Embedding algorithms summary

Many different algorithms exist
All start from neighborhood graph and distance matrix A
Most use e-vectors of a tranformation of A (preserve the sparsity pattern)

DiffusionMaps — can separate manifold shape from sampling density
LTSA — “correct” at boundaries
Isomap — best for flat manifolds with no holes, small data

Most embeddings sensitive to

o choice of radius € (within “correct” range)
e sampling density p
@ neighborhoods K-nn vs. radius

i.e. most embeddings introduce distortions

Marina Meild (UW) Manifold Learning
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Manifold Learning as a sandwich

Input data :
o
ML Algorithm °

Output data

what distance measure?

what graph? [Maier,von Luxburg, Hein 2009]

what kernel width €? [Perrault-Joncas,M,McQueen
NIPS17]

what intrinsic dimension d?

[Chen,Little, Maggioni,Rosasco | and variant by
[Perrault-Joncas,M,McQueen NIPS17]

what embedding dimension s > d? [Chen,M,NeurlPS19]

ML Algorithm: DirrMaps, LTSA

3(\-‘{o¥d Learning 6

:
]

- \\
"]

Marina Meild (UW)

o Cluster [M,Shi 00],[M,Shi 01]. .. [M NeurlPS18]

Estimate/correct distortion: Metric Learning and
Riemannian Relaxation [McQueen, M, Perrault-Joncas
NIPS16]

Validate d, s, [select eigenvectors] [Chen, M NeurlPS19]
Topological Data Analysis (TDA)

Meaning of coordinates [M,Koelle,Zhang, 2018,2022]

Manifolds with vector fields [Perrault-Joncas, M, 2013,
Chen, M, Kevrekidis 2021]
Finding ridges and saddle points (in progress)
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_ Metric preserving manifold leaming  Riemannian manifolds basics |
Outline

@ Metric preserving manifold learning — Riemannian manifolds basics
o Embedding algorithms introduce distortions
o Metric Manifold Learning — Intuition
@ Estimating the Riemannian metric

Marina Meild (UW) Manifold Learning
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Embedding in 2 dimensions by different manifold learning algorithms

Original data

Laplacian Eigenmaps (LE)
(Swiss Roll with hole)

Local Linear Embedding (LLE)

Pl

Ve
'*

ex

Marina Meild (UW) Manifold Learning

Isomap
o

B =

Local Tangent Space Alignment
(LTSA

)
'ﬁ&%
.
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Failures vs. distortions

o Distortion vs failure
o ¢ distorts if distances, angles, density not preserved, but ¢ smooth and invertible
o If ¢ does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
o Examples: points &;, £; are not neighbors in M but are neighbors in ¢(M), or viceversa (hence ¢ is
not invertible, or not continuous)

@ Most common modes of failure

o distance matrix A does not capture topology (artificial “holes” or “bridges”)
o usually becasuse kernel width € too small or too large
o choice of e-vectors
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Artefacts

o Artefacts=features of the embedding that do not exist in the data (clusters, holes, “arms”,
“horseshoes”)

o What to beware of when you compute an embedding

algorithms that claim to choose € automatically

confirming the embedding is “correct” by visualization: tends to over-smooth, i.e. € over-estimated
K-nn (default in sk-1learn!) instead of radius-neighbors: tends to create clusters

large variations in density: subsample data to make it more uniform

“horseshoes”: choose other e-vectors (¢ is almost singulare)

@ Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural
networks
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Manifold Learning
Metric preserving manifold learning — Riemannian manifolds basics

Embedding algorithms introduce distortions

Artefacts

Exercise 7

Independent coordinates and artefacts for long strips, a,b
a. Generate a rectangle with a hole. Generate the following sets of points on 2D grids.

dimension grid spacing  number points
left side 0,1] x [0,1] 0.05 441
middle 1.01, 2] x [0,0.3] 0.01 100 x 31 = 3100
middle 1.01,2] x [0.7,1.] 0.01 100 x 31 = 3100
right side 2.05, 3] x [0, 1] 0.05 420
D 0, 3] x [0, 1] 7081

Plot the data to verify that it is a rectangle with a rectangular hole. The density of the grid is not
uniform. In all plots from here on, color the points by their original y coordinate. Ensure that the
dot size is small enough for clarity (size 1 or less recommended).

b. Let D consist of all the points in a.. Set the kernel width e = 0.05 and the [optional]
neighborhood radius r = 0.15001 (i.e. just over 0.15). Calculate for these data

e A the distance matrix (can be a dense matrix)
e S the similarity matrix (can be a dense matrix)
o L™ =| — D 'S the random walks Laplacian
e [ the renormalized Laplacian

Display these matrices as square images with an appropriate color scale (don't forget to show the
scale with each plot).
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Manifold Learning
Metric preserving manifold learning — Riemannian manifolds basics

Embedding algorithms introduce distortions

Artefacts

Exercise 8

Independent coordinates and artefacts for long strips - c,d,e,f

c. Compute ¢o.9 the principal e-vectors 0 : 9 for L and discard ¢ the constant vector. Display ¢1.9
as a pairwise plot. Ensure that the dot size is small enough for clarity (size 1 or less recommended).
d. From the plot in c. choose a pair of coordinates ¢1, ¢i that produces the embedding visually
closest to the original rectangle. While there is some subjectivity in this choice, embeddings that
are “almost dimension 1”, or with self-crossings are NOT close to the original data.

e. Repeat c,d with L™, denoting its e-vectors 1g.9.

f. Embed D with ISOMAP (OK to use outsourced code) and plot the data in the embedding
coordinates y1, y>.




Preserving topology vs. preserving (intrinsic) geometry

o Algorithm maps data p € RP — ¢(p) = x € R™

o Mapping M — ¢(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

o Mapping ¢ is isometry

o preserves distances along curves in M, angles, volumes
For most algorithms, in most cases, ¢ is not isometry

Preserves topology Preserves topology + intrinsic geometry

Marina Meild (UW) Manifold Learning
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Theoretical results in isometric embedding

Positive results
General theory
@ Nash's Theorem: Isometric embedding is possible.
@ Diffusion Maps embedding is isometric in the limit
[Berard,Besson,Gallot 94],[Portegies:16]

Special cases

@ Isomap [Bernstein, Langford, Tennenbaum 03]
recovers flat manifolds isometrically

@ LE/DM recover sphere, torus with equal radii
(sampled uniformly)

o Follows from consistency of Laplacian
eigenvectors [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10, Gine &
Koltchinskii 06]
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Negative results

Obvious negative examples
No affine recovery for normalized Laplacian
algorithms [Goldberg&al 08]

Empirically, most algorithms

preserve neighborhoods (=topology)

distort distances along manifold (=geometry)
distortions occur even in the simplest cases
distortion persists when n — oo

one cause of distortion is variations in sampling
density p; [Coifman& Lafon 06] introduced
Diffusion Maps (DM) to eliminate these
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Metric Manifold Learning

Wanted

eliminate distortions for any “well-behaved” M
and any any “well-behaved” embedding ¢(M)
in a tractable and statistically grounded way

Idea
Given data D C M, some embedding ¢(D) that preserves topology
(true in many cases)

Estimate distortion of ¢ and correct it!

The correction is called the pushforward Riemannian Metric g
The distortion is the dual pushforward Riemannian Metric h

Marina Meild (UW) Manifold Learning
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Metric Manifold Learning — Intuition

Corrections for 3 embeddings of the same data

/: Y K ﬁ‘ “ \

'!“ ‘l“ Mﬁ Y \. ‘\ ‘|‘ ) _
Y AL - Ei
i M ks
:'l' ] AN =

Isomap

-’

Laplacian Eigenmaps
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Metric preserving manifold learning — Riemannian manifolds basics
Metric Manifold Learning — Intuition

Corrections for 3 embeddings of the same data

Definition 4 (Riemannian Metric)

The Riemannian metric g defines an inner product <, >, on the tangent space 7, M for every
pE M.

Definition 5 (Riemannian Manifold)

A Riemannian manifold (M, g) is a smooth manifold M with a Riemannian metric g defined at
every point p € M.

e p point on M
e 7,M = tangent subspace at p
at each p € M, g defines quadratic form G,
<v,w >= vTGpW for v,w € T,M and for p € M

— g is symmetric and positive definite tensor field
— g also called first fundamental form

In coordinates at each point p € M, G, is a positive definite matrix of rank d



What is a (Riemannian) metric?

e In Euclidean space RY, the scalar product (u,v) = uTv
o From the scalar product we derive norms |[u||? = (u, u), distances ||u — v||, angles
cos(u, v) = (u, v)/(lullIv]).
o Any other scalar product on R? is defined by (u,v)g = u? Gv = (G/2u)T(G/?v), with

G » 0 defines the metric
o Note that whenever G = 0, H = G~1 > 0 also defines a metric

On a manifold M, at each p € M we have a different G,
The function g(p) = Gp is called the Riemannian metric
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All (intrinsic) geometric quantities on M involve g

@ Volume element on manifold

Vol(W) = / V/det(g)dx! ... dx?.
w

b dx’ dx/
I(y) = Sl
™) /a Z_j:gj o

@ Under a change of parametrization, g changes in a way that leaves geometric quantities
invariant

o Length of curve v
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N e oo e 0 i)
Calculating distances in the manifold M

Original Laplacian Eigenmaps

true distance d = 1.57

Shortest | Metric | Rel.

Embedding [If(p) — f(p")] Path d error
Original data 1.41 1.57 1.62 3.0%
Isomap m =2 1.66 1.75 1.63 3.7%
LTSA m=2 0.07 0.08 1.65 4.8%
LEm=2 0.08 0.08 1.62 3.1%

curve ¥ = (yo, 1, - yk) path in graph

+ G + Gye—1)

5 ¥k — yk—1)

K
geodesic distance d = Z (Vk = Yk—1)
k=0
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G for Sculpture Faces

@ n = 698 gray images of faces in D = 64 X 64 dimensions
@ head moves up/down and right/left

Marina Meild (UW) Manifold Learning



Problem: Estimate the g associated with ¢

e Given:

o data set D = {py,... pn} sampled from Riemannian manifold (M, g), M C RP

o embedding {y; = ¢(pi), pi € D}
by e.g DiffusionMap, Isomap, LTSA, ...

o Estimate G; € R™X™ the pushforward Riemannian metric at p; € D
in the embedding coordinates ¢

@ The embedding {y1:n, Gi.n} will preserve the geometry of the original data
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Relation between g and A

o A = Laplace-Beltrami operator on M
o A = div - grad
2 — 5 9%
°0nC’Af_Zfa§j?
o on weighted graph with similarity matrix S, and t, = >° _, S,/ A = diag{t,} — S

A = Laplace-Beltrami operator on M
G Riemannian metric (in coordinates)
o H=G~! matrix inverse

(Differential geometric fact)

o L the renormalized Laplacian estimates A (very well studied v')

Marina Meild (UW) Manifold Learning 19-20 May, 2022
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Estimation of G~1

Let A be the Laplace-Beltrami operator on M, H= G~ !, and k,/ =1,2,...d.

Ak~ k(P)) (91— 9PN loyipr ) = Hu(P)

Intuition:

o A applied to test functions f = ggentered geentered
o this produces H(p) in the given coordinates
@ consistent estimation of A is well studied [Coifman&Lafon 06,Hein&al 07]
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Metric Manifold Learning algorithm

Given dataset D
@ Preprocessing (construct neighborhood graph, ...)
©® Find an embedding ¢ of D into R™
© Estimate discretized Laplace-Beltrami operator L
© Estimate H, and G, = Hj} for all p

@ Fori,j=1:m,

HY = S [L(¢i * ¢)) — bi * (Ly) — bj % (Lopy)]
where X # ¥ denotes elementwise product of two vectors X, ¥ € RV
@ Forp € D, H, = [H];
@ Forp € D, (V,X) + SVD(Hp,d) and G, = VE 'V = H (rank d (pseudo)inverse of H,)

Output (¢p, Gp) for all p
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Manifold Learning

Metric preserving manifold learning — Riemannian manifolds basics

Estimating the Riemannian metric

The case m > d

Algorithm METRICEMBEDDING

Input data D, m embedding dimension, € resolution
1. Construct neighborhood graph p, p’ neighbors iff ||p — p’||> < e
2. Construct similary matrix
1 12
==z llp=p 117 . ;
Spl—elEa iff p, p’ neighbors, S = [S,/1, ,/cp
3. Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

31ty = X ep Spprr T = diagty,, p€D
32 8§ = 17'sT!

33 &, = DD e D ppll T = diagt,,p € D
34 P =TS8

35 L= (I —P)/e
4. Embedding [ ¢p Jpep = EMBEDDINGALG(D, m)
. Estimate embedding metric H, at each point
denote Z =X * Y, X, Y € RV iff Z; = X;Y; for all i
5.1 Fori,j=1:m, H" = }[L(¢i* d;) — ¢i * (Le;) — ¢j * (Lgi)] (column vector)
5.2 For p € D, Hy = [H]]; and H, = Fif
Ouput (¢p, Hp)peD

o



Computational cost

n = |D|, D = data dimension,m= embedding dimension
© Neighborhood graph +
@ Similarity matrix O(n?D) (or less)
@ Laplacian O(n?)
O EMBEDDINGALG e.g. O(mn?) (eigenvector calculations)
© Embedding metric

o O(nm?) obtain g~ or At
o O(nm®) obtain g or h

Steps 1-3 are part of many embedding algorithms
Steps 3-5 independent of ambient dimension D
Matrix inversion/pseudoinverse can be performed only when needed
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Metric Manifold Learning summary

Why useful

o Measures local distortion induced by any embedding algorithm

G; = I when no distortion at p;
o Corrects distortion

o Integrating with the local volume/length units based on G;
o Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
@ Algorithm independent geometry preserving method
o Outputs of different algorithms on the same data are comparable
Applications
o Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]
o Helps with estimation of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco ])
o selecting eigencoordinates [Chen, M NeurlPS19]
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_ = Neigfiborhood radius and other choices |
Outline

© Neighborhood radius and other choices
o What graph? Radius-neighbors vs. k nearest-neighbors
@ What neighborhood radius/kernel bandwidth?

Marina Meild (UW) Manifold Learning 19-20 May, 2022 60 /72



_ What graph? Radius-neighbors vs. k nearest-neighbors
What graph? Radius-neighbors vs. k nearest-neighbors

@ k-nearest neighbors graph: each node has degree k
o radius neighbors graph: p, p’ neighbors iff ||[p — p/|| < r

@ Does it matter?

@ Yes, for estimating the Laplacian and distortion
e Why? [Hein 07, Coifman 06, Ting 10, ...] k-nearest neighbor Laplacians do not converge to
Laplace-Beltrami operator A
o but to A + 2V/(log p) - V (bias due to non-uniform sampling)

radius neighbor
SR

configurations of ethanol d = 2
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Effect of re-normalization

Ln

L renormalized
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Choosing €

o Every manifold learning algorithm starts with a neighborhood graph
o Parameter ¢

e is neighborhood radius
o and/or kernel banwidth

_llp=p'11?
o recall k(p,p’) = e < if ||p— p'||? < ce and 0 otherwise (¢ € [1,10])

€ too small € too large
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Methods for choosing €

1
@ Theoretical (asymptotic) result /e o< n~ 6 [Singer06]

In practice:

Visual inspection?
o Cross-validation ?

o only if related to prediction task
@ [Chen&Buja09] heuristic for k-nearest neighbor graph

e unsupervised

o depends on embedding method used

e optimizes consistency of k-nn graph in data and embedding

o k-nearest neighbor graph has different convergence properties than e neighborhood
o Geometric Consistency heuristic [Perrault-Joncas&Meilal7]

o unsupervised
o optimizes Laplacian, does not require embedding

o computes “isometry” in 2 different ways and minimizes distortion between them
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_ What neighborhood radius/kernel bandwidth?
Geometric Consistency (GC): Idea

o |dea: choose € so that geometry encoded by L. is closest to data geometry

I I It 3 U%EE%III

@ For given € and data point p
@ Project neighbors of p onto tangent subspace

@ local embedding around p
@ approximately isometric to original data

@ Calculate Laplacian L(€) at p and estimate distortion H ,
@ He p must be & Iy identity matrix
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The distortion measure

Input: data set D, dimension d’ < d, scale €
@ Estimate Laplacian L(¢) and weights w;(€) with LAPLACIAN
@ Project data on tangent plane at p
o For each p
o Let neigh, . = {p’ € D, [Ip’ — p|| < ce} where c € [1,10]
o Calculate (weighted) local PCA wLPCA(neigh, ., d") (with weights wi(e))
o Calculate coordinates z; in PCA space for points in neighw6
@ Estimate H. , € R *9" by RMETRIC
e For each p
o Use row p of L(e)
e z;'s play the role of ¢
Q@ Compute squared Loss over all p's Loss(€) = >, cp [[He,p — lq]|3
Output Loss(¢)

o Select €* = argmin_ Loss(€) Distorsions versus radi

o d’ < d (more robust) .
@ minimize by 0-th order optimization (faster than grid
search)

Distorsion

2 3 4 s 67809 2 3 4
01 1
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Example € and distortion for aspirin

e Each point = a configuration of the aspirin molecule
@ Cloud of point in D = 47 dimensions embedded in m = 3 dimensions
o (only 1 cluster shown)

Stable state
Lo — dim=1,¢"=254
dim =2, e"=2.15
— dim =3, £"=2.40

0.9
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Bonus: Intrinsic Dimension Estimation in noise

o Geometric consistency + eigengap method of [Chen,Little, Maggioni,Rosasco,2011]
@ do local PCA for a range of € values
@ choose appropriate radius € (by Geometric consistency)
© dimension = largest eigengap between Ax and Mgy at radius € (proof by Chen&al)
(“largest” = most frequent largest over a sample)

Loss(€) vs. € Singular values of LPCA vs. ¢

AT

distortion
Singular values A

|

1
2
3
4
—1 5
6
\ / i :
: H — 8
V i N 10 ol
10 10’
H €
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Example: Intrinsic Dimension Estimation results
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0000k
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Summary
@"”“‘\ﬁo‘d Learning 6> °
]
q °

what distance measure?

what graph? [Maier,von Luxburg, Hein 2009]

what kernel width €? [Perrault-Joncas,M,McQueen NIPS17]
what intrinsic dimension d? [Chen,Little,Maggioni,Rosasco ] and
variant by [Perrault-Joncas,M,McQueen NIPS17]

what embedding dimension s > d? [Chen,M,NeurlPS19]

ML Algorithm: DirFMaPs, LTSA

- “\"

Marina Meild (UW)

Cluster [M,Shi 00],[M,Shi 01]. .. [M NeurlPS18]

Estimate/correct distortion: Metric Learning and Riemannian
Relaxation [McQueen, M, Perrault-Joncas NIPS16]

Validate d, s, [select eigenvectors| [Chen, M NeurlPS19]
Topological Data Analysis (TDA)

Meaning of coordinates [M,Koelle,Zhang, 2018,2022]

Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M,

Kevrekidis 2021]
Finding ridges and saddle points (in progress)

Manifold Learning 19-20 May, 2022 71



Marina Meild (UW) Manifold Learning

19-20 May, 2022



	What is manifold learning good for?
	Manifolds, Coordinate Charts and Smooth Embeddings
	Non-linear dimension reduction algorithms
	Local PCA
	PCA, Kernel PCA, MDS recap
	Principal Curves and Surfaces (PCS)
	Embedding algorithms
	Heuristic algorithms

	Metric preserving manifold learning – Riemannian manifolds basics
	Embedding algorithms introduce distortions
	Metric Manifold Learning – Intuition
	Estimating the Riemannian metric

	Neighborhood radius and other choices
	What graph? Radius-neighbors vs. k nearest-neighbors
	What neighborhood radius/kernel bandwidth?


