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Non-linear dimension reduction algorithms

Non-linear dimension reduction: Three principles

Algorithm given D = {⇠1, . . . ⇠n} from M ⇢ RD , map them by Algorithm f to
{y1, . . . yn} ⇢ Rm

Assumption if points from M, n!1, f is embedding of M
(f “recovers” M of arbitrary shape).

1 Local (weighted) PCA (lPCA)
2 Principal Curves and Surfaces (PCS)
3 Embedding algorithms (Di↵usion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian

Eigenmaps,. . . )

4 [Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

Intrinsic dimension d

must be estimated (we assume we know it) (Lecture 3)
sample complexity is exponential in d – NONPARAMETRIC (upcoming)

non-uniform sampling
volume of M (we assume volume finite; larger volume requires more samples)
injectivity radius/reach of M (next page)

curvature

ESSENTIAL smoothness parameter: the neighborhood radius (Lecture 3)
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Non-linear dimension reduction algorithms

Neighborhood graphs

All ML algorithms start with a neighborhood graph over the data points
neigh

i
denotes the neighbors of ⇠i , and ki = | neigh

i
|.

⌅i = [⇠
i0 ]i02neighi

2 RD⇥ki contains the coordinates of ⇠i ’s neighbors

In the radius-neighbor graph, the neighbors of ⇠i are the points within distance r from ⇠i ,
i.e. in the ball Br (⇠i ).
In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of ⇠i .

k-nn graph has many computational advantages
constant degree k (or k � 1)
connected for any k > 1
more software available

but much more di�cult to use for consistent estimation of manifolds (see later, and )

data ⇠1, . . . ⇠n ⇢ RD neighborhood graph A (sparse) matrix of
distances between neighbors
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Non-linear dimension reduction algorithms Local PCA

Local Principal Components Analysis (LPCA)

Idea Approximate M with tangent subspaces at a finite number of data points
1 Pick a point ⇠i 2 D

2 Find neighi , perform PCA on neighi [{⇠i} and obtain (a�ne) subspace with basis Ti 2 RD⇥d

3 Represent ⇠i0 2 neighi by yi = ProjTi
⇠i0

yi0 = T
T

i
(⇠i0 � ⇠i ) new coordinates of ⇠i0 in T⇠iM (1)

Repeat for a sample of n0 < n data points
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Non-linear dimension reduction algorithms Local PCA

Local PCA

For n, n0 su�ciently large, M can be approximated with arbitrary accuracy

So, are we done?
Some issues with LPCA
Point ⇠j may be represented in multiple Ti ’s (minor)
New coordinates yj are relative to local Ti

Fine for local operations like regression
Number of charts depends on extrinsic properties
Cumbersome for larger scale operations like following a curve on M

Biased in noise
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Non-linear dimension reduction algorithms PCA, Kernel PCA, MDS recap

Multi-dimensional scaling (MDS)

(See notes for PCA, Kernel PCA, centering matrix H, MDS for details)

Problem Given matrix of (squared) distances D 2 Rn⇥n, find a set of n points in d

dimensions Y = d ⇥ n so that

DY = [kyi � yjk
2]i,j ⇡ D

Useful when
original points are not vectors but we can compute distances (e.g string edit distances, philogenetic
distances)
original points are in high dimensions
original distances are geodesic distances on a manifold M

MDS Algorithm

1 Calculate K = � 1
2HDH

T

2 Compute its d principal e-vectors/values: K = V⌃2
V

T

3 Y = ⌃V
T are new coordinates

The Centering Matrix H

H = I �
1

n
1n⇥n

Q: Could MDS be an embedding algorithm? What is di↵erent about MDS and upcoming
algorithms?
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

Principal Curves and Surfaces (PCS)

??

Elegant algorithm , most useful for d = 1 (curves)
Also works in noise ??

data in RD near a curve (or set of curves)
Goal: track the ridge of the data density (will be biased estimator of curve M)
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

What is a density ridge

Peak

rp = 0
r

2
p � 0

Saddle

rp = 0
r

2
p has �1 > 0, �2:D < 0

Ridge

rp = 0 in span{v2:D}
r

2
p has �2:D < 0, (v1:D e-vectors r2

p)

In other words, on a ridge

rp / v1 direction of least negative curvature (LNC) of r2
p

rp, v1 are tangent to the ridge
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

Gradient and Hessian for Gaussian KDE

Data ⇠1:n 2 RD

Let p() be the kernel density estimator with some kernel width h.

p(⇠) =
1

nhd

nX

i=1

(
⇠ � ⇠i

h
) =

1

nhd

nX

i=1

exp

✓
�
(⇠ � ⇠i )2

2h2

◆
/!d (2)

We prefer to work with ln p which has the same critical points/ridges as p

r ln p = 1
p
rp = g

r
2 ln p = � 1

p2
rprp

T + 1
p
r

2
p = H

g(⇠) = �
1

h2
[⇠�

nX

i=1

⇠i exp

✓
�
(⇠ � ⇠i )2

2h2

◆
/

nX

i=1

exp

✓
�
(⇠ � ⇠i )2

2h2

◆

| {z }
wi

] = �
1

h2
[⇠ �m(⇠)
| {z }
Mean�shift

] (3)

H(⇠) =
P

n

i=1 wiui u
T

i
� g(⇠)g(⇠)T � 1

h2
I
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

SCMS Algorithm

SCMS = Subspace Constrained Mean Shift

Init any ⇠1 Density estimated by p =data ? Gaussian kernel of width h

for k = 1, 2, . . .
1 calculate g

k
/ r ln p(⇠k ) by Mean-Shift O(nD)

2 H
k = r2 ln p(⇠k ) O(nD2)

3 compute v1 principal e-vector of Hk
O(D2)

4 ⇠k+1
 ⇠k + Proj

v?1
g
k

O(D)

until convergence

Algorithm SCMS finds 1 point on ridge; n restarts to cover all density

Run time / nD
2/iteration

Storage / D
2
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

Principal curves found by SCMS

LBFGS=accelerated, approximate SCMS – coming next!
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Non-linear dimension reduction algorithms Principal Curves and Surfaces (PCS)

Accelerating SCMS

reduce dependency on n per iteration
ignore points far away from ⇠
use approximate nearest neighbors (clustering, KD-trees,. . . )

reduce number of SCMS runs: start only from n
0 < n points

reduce number iterations: track ridge instead of cold restarts

project rp on v1 instead of v?
1

tracking ends at critical point (peak or saddle)

reduce dependence on D

approximate v1 without computing whole H

D
2
 mD with m ⇡ 5
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Non-linear dimension reduction algorithms Embedding algorithms

Non-linear dimension reduction algorithms summary

Paradigm Input Output f (new ⇠) f
�1(new p)

local PCA ⇠1:n 2 RD
y1:n 2 Rd local maps X ?
(many)

Principal Curves ⇠1:n 2 RD ⇠01:n 2 RD global map X N/A
SCMS (if data kept)

Embedding ⇠1:n 2 RD
y1:n 2 Rm global map ad-hoc or ad-hoc or

Algorithm or 2 Rd local maps interpolation interpolation
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Non-linear dimension reduction algorithms Embedding algorithms

Embedding algorithms

Di↵usion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,. . .

Map D to Rm where m � d (global coordinates)
Can also map a local neighborhood U ✓ D to Rd (local, intrinsic coordinates)

Input

embedding dimension m

neighborhood radius/kernel width ✏
usually radius r ⇡ 3⇥ ✏

neighborhood graph
{neighi , ⌅i , for i = 1 : n}
A = [k⇠i � ⇠jk]ni,j=1 distance matrix, with Aij =1 if i 62 neighj

Marina Meilă (UW) Manifold Learning 19-20 May, 2022 29 / 72



Non-linear dimension reduction algorithms Embedding algorithms

The Isomap algorithm

Isomap Algorithm [Tennenbaum, deSilva & Langford 00]

Input A, dimension d

1 Find all shortest path distances in neighborhood graph
if Aij =1, then Aij  graph distance between i , j

2 Construct matrix of squared distances

M = [(Aij )
2]

3 use Multi-Dimensional Scaling MDS(M, d) to obtain d dimensional coordinates Y for D

Works also for m > d
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Non-linear dimension reduction algorithms Embedding algorithms

The Di↵usion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Di↵usion Maps Algorithm

Input distance matrix A 2 Rn⇥n , bandwidth ✏, embedding dimension m

1 Compute Laplacian L 2 Rn⇥n

2 Compute eigenvectors of L for smallest m + 1 eigenvalues [�0 �1 . . .�m] 2 Rn⇥m

�0 is constant and not informative

The embedding coordinates of pi are (�i1, . . .�is)
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Non-linear dimension reduction algorithms Embedding algorithms

The (renormalized) Laplacian

Laplacian

Input distance matris A 2 Rn⇥n, bandwidth ✏

1 Compute similarity matrix Sij = exp

✓
�

A
2
ij

✏2

◆
= (Aij/✏)

2 Normalize columns dj =
P

n

i=1 Sij , L̃ij = Sij/dj
3 Normalize rows d

0
i
=
P

n

j=1 L̃ij , Pij = L̃ij/d 0
i

4 L = 1
✏2
(I � P)

5 Output L, d 0
i
/di

Laplacian L central to understanding the manifold geometry
limn!1 L = �M [Coifman,Lafon 2006]

Renormalization trick cancels e↵ects of (non-uniform) sampling density [Coifman & Lafon 06]

Other Laplacians
L
un = diag {d1:n}� A unnormalized Laplacian

L
rw = I � diag {d1:n}�1

A random walk Laplacian
L
n = I � diag {d1:n}�1/2

Adiag {d1:n}�1/2 normalized Laplacian
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Non-linear dimension reduction algorithms Embedding algorithms

Isomap vs. Di↵usion Maps

Isomap

Preserves geodesic distances
but only when M is flat and “data” convex

Computes all-pairs shortest paths O(n3)
Stores/processes dense matrix

Di↵usionMap

Distorts geodesic distances
Computes only distances to nearest
neighbors O(n1+✏)
Stores/processes sparse matrix

t-SNE, UMAP visualization algorithms
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Non-linear dimension reduction algorithms Heuristic algorithms

Heuristic algorithms

Local Linear Embedding (LLE)

one of the first embedding algorithms
later analysis showed that LLE has no limit when n!1

closest modern version is Local Tangent Space Alignment (LTSA)

t-Stochastic Neighbor Embedding (t-SNE)

Input similarity matrix S , embedding dimension s

Init choose embedding points y1:n 2 Rs at random
1 Sii  0, normalize rows di =

P
j
Sij , Pij = Sij/di

2 symmetrize P = 1
2n (P + P

T ) P is distribution over pairs of neighbors (i, j)

3 S̃ij = ̃(kyi � yjk)compute similarity in output space
where ̃(z) = 1

1+z2
the Cauchy (Student t with 1 degree of freedom)

4 Define distribution Q with Qij / Sij

5 Change yi :n to decrease the Kullbach-Leibler divergence KL(P||Q) =
P

i,j Pij ln
Pij

Qij
(by gradient

descent) and repeat from step 3

t-SNE is empirically useful for visualizing clusters
t-SNE is proved to create artefacts

Marina Meilă (UW) Manifold Learning 19-20 May, 2022 34 / 72



Non-linear dimension reduction algorithms Heuristic algorithms

UMAP: Uniform Manifold Approximation and Projection [McInnes, Healy,

Melville,2018]

Input k number nearest neighbors, d ,
1 Find k-nearest neighbors
2 Construct (asymmetric) similarities wij , so that

P
j
wij = log2 k. W = [wij ].

3 Symmetrize S = W +W
T
�W . ⇤WT is similarity matrix.

4 Initialize embedding � by LaplacianEigenmaps.
5 Optimize embedding.

Iteratively for niter steps
1 Sample an edge ij with probability / exp�dij
2 Move �i towards �j

3 Sample a random j
0 uniformly

4 Move �i away from �
j0

Stochastic approximate logistic regression of ||�i � �j || on dij .

Output �
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Non-linear dimension reduction algorithms Heuristic algorithms

Embedding algorithms summary

Many di↵erent algorithms exist
All start from neighborhood graph and distance matrix A

Most use e-vectors of a tranformation of A (preserve the sparsity pattern)

Di↵usionMaps – can separate manifold shape from sampling density
LTSA – “correct” at boundaries
Isomap – best for flat manifolds with no holes, small data

Most embeddings sensitive to
choice of radius ✏ (within “correct” range)
sampling density p

neighborhoods K-nn vs. radius

i.e. most embeddings introduce distortions
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Non-linear dimension reduction algorithms Heuristic algorithms

Manifold Learning as a sandwich
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Non-linear dimension reduction algorithms Heuristic algorithms

Manifold Learning as a sandwich

what distance measure?
what graph? [Maier,von Luxburg, Hein 2009]

what kernel width ✏? [Perrault-Joncas,M,McQueen

NIPS17]

what intrinsic dimension d?
[Chen,Little,Maggioni,Rosasco ] and variant by
[Perrault-Joncas,M,McQueen NIPS17]

what embedding dimension s � d? [Chen,M,NeurIPS19]

ML Algorithm: DiffMaps, LTSA
Cluster [M,Shi 00],[M,Shi 01]. . . [M NeurIPS18]

Estimate/correct distortion: Metric Learning and
Riemannian Relaxation [McQueen, M, Perrault-Joncas

NIPS16]

Validate d , s, [select eigenvectors] [Chen, M NeurIPS19]

Topological Data Analysis (TDA)
Meaning of coordinates [M,Koelle,Zhang, 2018,2022]

Manifolds with vector fields [Perrault-Joncas, M, 2013,

Chen, M, Kevrekidis 2021]

Finding ridges and saddle points (in progress)
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Metric preserving manifold learning – Riemannian manifolds basics

Outline

1 What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms
Local PCA
PCA, Kernel PCA, MDS recap
Principal Curves and Surfaces (PCS)
Embedding algorithms
Heuristic algorithms

4 Metric preserving manifold learning – Riemannian manifolds basics
Embedding algorithms introduce distortions
Metric Manifold Learning – Intuition
Estimating the Riemannian metric

5 Neighborhood radius and other choices
What graph? Radius-neighbors vs. k nearest-neighbors
What neighborhood radius/kernel bandwidth?
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Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Embedding in 2 dimensions by di↵erent manifold learning algorithms

Original data
(Swiss Roll with hole)

Hessian Eigenmaps (HE)

Laplacian Eigenmaps (LE)

Local Linear Embedding (LLE)

Isomap

Local Tangent Space Alignment
(LTSA)
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Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Failures vs. distortions

Distortion vs failure
� distorts if distances, angles, density not preserved, but � smooth and invertible
If � does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
Examples: points ⇠i , ⇠j are not neighbors in M but are neighbors in �(M), or viceversa (hence � is
not invertible, or not continuous)

Most common modes of failure
distance matrix A does not capture topology (artificial “holes” or “bridges”)
usually becasuse kernel width ✏ too small or too large
choice of e-vectors
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Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Artefacts

Artefacts=features of the embedding that do not exist in the data (clusters, holes, “arms”,
“horseshoes”)

What to beware of when you compute an embedding
algorithms that claim to choose ✏ automatically
confirming the embedding is “correct” by visualization: tends to over-smooth, i.e. ✏ over-estimated
K-nn (default in sk-learn!) instead of radius-neighbors: tends to create clusters
large variations in density: subsample data to make it more uniform
“horseshoes”: choose other e-vectors (� is almost singulare)

Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural
networks
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Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Preserving topology vs. preserving (intrinsic) geometry

Algorithm maps data p 2 RD
�! �(p) = x 2 Rm

Mapping M �! �(M) is di↵eomorphism
preserves topology
often satisfied by embedding algorithms

Mapping � is isometry

preserves distances along curves in M, angles, volumes
For most algorithms, in most cases, � is not isometry

Preserves topology Preserves topology + intrinsic geometry
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Metric preserving manifold learning – Riemannian manifolds basics Embedding algorithms introduce distortions

Theoretical results in isometric embedding

Positive results

General theory
Nash’s Theorem: Isometric embedding is possible.
Di↵usion Maps embedding is isometric in the limit
[Berard,Besson,Gallot 94],[Portegies:16]

Special cases
Isomap [Bernstein, Langford, Tennenbaum 03]
recovers flat manifolds isometrically
LE/DM recover sphere, torus with equal radii
(sampled uniformly)

Follows from consistency of Laplacian
eigenvectors [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10, Gine &
Koltchinskii 06]

Negative results

Obvious negative examples
No a�ne recovery for normalized Laplacian
algorithms [Goldberg&al 08]

Empirically, most algorithms

preserve neighborhoods (=topology)
distort distances along manifold (=geometry)
distortions occur even in the simplest cases
distortion persists when n !1

one cause of distortion is variations in sampling
density p; [Coifman& Lafon 06] introduced
Di↵usion Maps (DM) to eliminate these
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

Metric Manifold Learning

Wanted

eliminate distortions for any “well-behaved” M

and any any “well-behaved” embedding �(M)
in a tractable and statistically grounded way

Idea

Given data D ⇢M, some embedding �(D) that preserves topology
(true in many cases)

Estimate distortion of � and correct it!
The correction is called the pushforward Riemannian Metric g

The distortion is the dual pushforward Riemannian Metric h
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

Corrections for 3 embeddings of the same data

Isomap LTSA

Laplacian Eigenmaps
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

What is a (Riemannian) metric?

In Euclidean space Rd , the scalar product hu, vi = u
T
v

From the scalar product we derive norms kuk2 = hu, ui, distances ku � vk, angles
cos(u, v) = hu, vi/(kukkvk).
Any other scalar product on Rd is defined by hu, viG = u

T
Gv = (G1/2

u)T (G1/2
v), with

G � 0 defines the metric

Note that whenever G � 0, H = G
�1
� 0 also defines a metric

On a manifold M, at each p 2M we have a di↵erent Gp

The function g(p) = Gp is called the Riemannian metric
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

All (intrinsic) geometric quantities on M involve g

Volume element on manifold

Vol(W ) =

Z

W

p
det(g)dx1 . . . dxd .

Length of curve �

l(�) =

Z
b

a

vuut
X

ij

gij

dxi

dt

dxj

dt
dt,

Under a change of parametrization, g changes in a way that leaves geometric quantities
invariant
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

Calculating distances in the manifold M

Original Isomap Laplacian Eigenmaps

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)� f (p0)|| Path d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap m = 2 1.66 1.75 1.63 3.7%
LTSA m = 2 0.07 0.08 1.65 4.8%
LE m = 2 0.08 0.08 1.62 3.1%

curve � ⇡ (y0, y1, . . . yK ) path in graph

geodesic distance d̂ =
KX

k=0

s

(yk � yk�1)T
G(yk ) + G(yk�1)

2
(yk � yk�1)
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G for Sculpture Faces

n = 698 gray images of faces in D = 64⇥ 64 dimensions

head moves up/down and right/left

LTSA Algoritm
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Metric preserving manifold learning – Riemannian manifolds basics Estimating the Riemannian metric

Problem: Estimate the g associated with �

Given:
data set D = {p1, . . . pn} sampled from Riemannian manifold (M, g0), M ⇢ RD

embedding { yi = �(pi ), pi 2 D }

by e.g Di↵usionMap, Isomap, LTSA, . . .

Estimate Gi 2 Rm⇥m the pushforward Riemannian metric at pi 2 D

in the embedding coordinates �

The embedding {y1:n,G1:n} will preserve the geometry of the original data
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Metric preserving manifold learning – Riemannian manifolds basics Estimating the Riemannian metric

Relation between g and �

� = Laplace-Beltrami operator on M

� = div · grad

on C
2, �f =

P
j

@2
f

@⇠2
j

on weighted graph with similarity matrix S , and tp =
P

pp0 Spp0 , � = diag { tp}� S

� = Laplace-Beltrami operator on M

G Riemannian metric (in coordinates)
H = G

�1 matrix inverse

(Di↵erential geometric fact)

�f =
p

det(H)
X

l

@

@xl

 
1

p
det(H)

X

k

Hlk

@

@xk
f

!
,

L the renormalized Laplacian estimates � (very well studied X)
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Metric preserving manifold learning – Riemannian manifolds basics Estimating the Riemannian metric

Estimation of G�1

Let � be the Laplace-Beltrami operator on M, H = G
�1, and k, l = 1, 2, . . . d .

1

2
�(�k � �k (p)) (�l � �l (p))|�k (p),�l (p) = Hkl (p)

Intuition:

� applied to test functions f = �centered
k

�centered
l

this produces H(p) in the given coordinates
consistent estimation of � is well studied [Coifman&Lafon 06,Hein&al 07]
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Metric preserving manifold learning – Riemannian manifolds basics Estimating the Riemannian metric

Metric Manifold Learning algorithm

Given dataset D

1 Preprocessing (construct neighborhood graph, ...)
2 Find an embedding � of D into Rm

3 Estimate discretized Laplace-Beltrami operator L
4 Estimate Hp and Gp = H

†
p for all p

1 For i, j = 1 : m,
H

ij = 1
2 [L(�i ⇤ �j )� �i ⇤ (L�j )� �j ⇤ (L�i )]

where X ⇤ Y denotes elementwise product of two vectors X, Y 2 RN
2 For p 2 D, Hp = [Hij

p
]ij

3 For p 2 D, (V ,⌃) SVD(Hp, d) and Gp = V⌃�1
V

T = H
†
p
(rank d (pseudo)inverse of Hp)

Output (�p ,Gp) for all p
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Metric preserving manifold learning – Riemannian manifolds basics Estimating the Riemannian metric

Computational cost

n = |D|, D = data dimension,m= embedding dimension

1 Neighborhood graph +
2 Similarity matrix O(n2D) (or less)
3 Laplacian O(n2)
4 EmbeddingAlg e.g. O(mn

2) (eigenvector calculations)
5 Embedding metric

O(nm2) obtain g
�1 or h†

O(nm3) obtain g or h

Steps 1–3 are part of many embedding algorithms
Steps 3–5 independent of ambient dimension D

Matrix inversion/pseudoinverse can be performed only when needed
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Metric preserving manifold learning – Riemannian manifolds basics Estimating the Riemannian metric

Metric Manifold Learning summary

Why useful

Measures local distortion induced by any embedding algorithm
Gi = Id when no distortion at pi
Corrects distortion

Integrating with the local volume/length units based on Gi

Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]

Algorithm independent geometry preserving method
Outputs of di↵erent algorithms on the same data are comparable

Applications
Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]

Helps with estimation of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco ])
selecting eigencoordinates [Chen, M NeurIPS19]
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Neighborhood radius and other choices

Outline

1 What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms
Local PCA
PCA, Kernel PCA, MDS recap
Principal Curves and Surfaces (PCS)
Embedding algorithms
Heuristic algorithms

4 Metric preserving manifold learning – Riemannian manifolds basics
Embedding algorithms introduce distortions
Metric Manifold Learning – Intuition
Estimating the Riemannian metric

5 Neighborhood radius and other choices
What graph? Radius-neighbors vs. k nearest-neighbors
What neighborhood radius/kernel bandwidth?
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Neighborhood radius and other choices What graph? Radius-neighbors vs. k nearest-neighbors

What graph? Radius-neighbors vs. k nearest-neighbors

k-nearest neighbors graph: each node has degree k

radius neighbors graph: p, p0 neighbors i↵ ||p � p
0
||  r

Does it matter?

Yes, for estimating the Laplacian and distortion
Why? [Hein 07, Coifman 06, Ting 10, . . . ] k-nearest neighbor Laplacians do not converge to
Laplace-Beltrami operator �
but to � + 2r(log p) ·r (bias due to non-uniform sampling)

K-nearest neighbor
radius neighbor
configurations of ethanol d = 2
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Neighborhood radius and other choices What graph? Radius-neighbors vs. k nearest-neighbors

E↵ect of re-normalization

L
n simply normalized
L renormalized
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Choosing ✏

Every manifold learning algorithm starts with a neighborhood graph
Parameter ✏

is neighborhood radius
and/or kernel banwidth

recall (p, p0) = e
� ||p�p

0||2

✏2 if ||p � p
0
||
2
 c✏ and 0 otherwise (c 2 [1, 10])

✏ too small ✏ too large

Marina Meilă (UW) Manifold Learning 19-20 May, 2022 63 / 72



Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Methods for choosing ✏

Theoretical (asymptotic) result
p
✏ / n

� 1
d+6 [Singer06]

In practice:
Visual inspection?
Cross-validation ?

only if related to prediction task

[Chen&Buja09] heuristic for k-nearest neighbor graph
unsupervised
depends on embedding method used
optimizes consistency of k-nn graph in data and embedding
k-nearest neighbor graph has di↵erent convergence properties than ✏ neighborhood

Geometric Consistency heuristic [Perrault-Joncas&Meila17]

unsupervised
optimizes Laplacian, does not require embedding
computes “isometry” in 2 di↵erent ways and minimizes distortion between them
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Geometric Consistency (GC): Idea

Idea: choose ✏ so that geometry encoded by L✏ is closest to data geometry

For given ✏ and data point p
1 Project neighbors of p onto tangent subspace

local embedding around p

approximately isometric to original data

2 Calculate Laplacian L(✏) at p and estimate distortion H✏,p

H✏,p must be ⇡ Id identity matrix
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

The distortion measure

Input: data set D, dimension d
0
 d , scale ✏

1 Estimate Laplacian L(✏) and weights wi (✏) with Laplacian
2 Project data on tangent plane at p

For each p

Let neigh
p,✏ = {p

0
2 D, kp0

� pk  c✏} where c 2 [1, 10]

Calculate (weighted) local PCA wLPCA(neigh
p,✏, d

0) (with weights wi (✏))
Calculate coordinates zi in PCA space for points in neigh

p,✏

3 Estimate H✏,p 2 Rd
0⇥d

0
by RMetric

For each p

Use row p of L(✏)
zi ’s play the role of �

4 Compute squared Loss over all p’s Loss(✏) =
P

p2D ||H✏,p � Id ||
2
2

Output Loss(✏)

Select ✏⇤ = argmin✏Loss(✏)

d
0
 d (more robust)

minimize by 0-th order optimization (faster than grid
search)
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Example ✏ and distortion for aspirin

Each point = a configuration of the aspirin molecule
Cloud of point in D = 47 dimensions embedded in m = 3 dimensions
(only 1 cluster shown)
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Bonus: Intrinsic Dimension Estimation in noise

Geometric consistency + eigengap method of [Chen,Little,Maggioni,Rosasco,2011]
1 do local PCA for a range of ✏ values
2 choose appropriate radius ✏ (by Geometric consistency)
3 dimension = largest eigengap between �k and �k+1 at radius ✏ (proof by Chen&al)

(“largest” = most frequent largest over a sample)

Loss(✏) vs. ✏ Singular values of LPCA vs. ✏
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Example: Intrinsic Dimension Estimation results
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Neighborhood radius and other choices What neighborhood radius/kernel bandwidth?

Summary

what distance measure?
what graph? [Maier,von Luxburg, Hein 2009]

what kernel width ✏? [Perrault-Joncas,M,McQueen NIPS17]

what intrinsic dimension d? [Chen,Little,Maggioni,Rosasco ] and
variant by [Perrault-Joncas,M,McQueen NIPS17]

what embedding dimension s � d? [Chen,M,NeurIPS19]

ML Algorithm: DiffMaps, LTSA
Cluster [M,Shi 00],[M,Shi 01]. . . [M NeurIPS18]

Estimate/correct distortion: Metric Learning and Riemannian
Relaxation [McQueen, M, Perrault-Joncas NIPS16]

Validate d , s, [select eigenvectors] [Chen, M NeurIPS19]

Topological Data Analysis (TDA)
Meaning of coordinates [M,Koelle,Zhang, 2018,2022]

Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M,

Kevrekidis 2021]

Finding ridges and saddle points (in progress)
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