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|
Outline

@ What is manifold learning good for? /
e Manifolds, Coordinate Charts and Smooth Embeddings /

© Non-linear dimension reduction algorithms &
@ Local PCA
e PCA, Kernel PCA, MDS recap
@ Principal Curves and Surfaces (PCS)
@ Embedding algorithms
@ Heuristic algorithms

@ Metric preserving manifold learning — Riemannian manifolds basics@&™
o Embedding algorithms introduce distortions
o Metric Manifold Learning — Intuition
@ Estimating the Riemannian metric

© Neighborhood radius and other choicesg=
o What graph? Radius-neighbors vs. k nearest-neighbors
@ What neighborhood radius/kernel bandwidth?

Marina Meild (UW) Manifold Learning

19-20 May, 2022



Non-linear dimension reduction: Three principles

Algorithm given D = {£1,...£,} from M C RP, map them by Algorithm f to
{y11 B -yn} CR™

Assumption if points from M, n — oo, f is embedding of M

(f "recovers” M of arbitrary shape).

(W Local (weighted) PCA (IPCA)
(& Principal Curves and Surfaces (PCS)

(5) Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian
Eigenmaps,...)

<% @ [Other, heuristic] t-SNE, UMAP, LLE
What makes the problem hard?
@ Intrinsic dimension d

e must be estimated (we assume we know it (Lecture 3)
e sample complexity is exponential in d = NONPARAMETRIC (upcoming)

@ non-uniform sampling

@ volume of M (we assume volume finite; larger volume requires more samples)

o injectivity radius/reach of M (next page)
@ curvature

o ESSENTIAL smoothness parameter: the neighborhood radius (Lecture 3)
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. Nomlinear dimension reduction algorithms |
Neighborhood graphs

@ All ML algorithms start with a neighborhood graph over the data points
o neigh; denotes the neighbors of &;, and k; = | neigh; |.
e = = [gillf/eneigh/, € RP*ki contains the coordinates of &;'s neighbors

o In the radius-neighbor graph, the neighbors of &; are the points within distance r from &;,
i.e. in the ball B,(&;).
o In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of &;.

@ k-nn graph has many computational advantages

o constant degree k (or k — 1)
e connected for any k > 1 '\

e more software available /

e but much more difficult to use for consistent estimation of manifolds (see later, and )

data &,...&, C RP neighborhood graph A (sparse) matrix of
distances between neighbors
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N ' P/
Local Principal Components Analysis (LPCA)

Idea Approximate M with tangent subspaces at a finite number of data points
@ Pick a point §; € D
@ Find neigh;, perform PCA on neigh; U{¢;} and obtain (affine) subspace with basis T; € RP*9
© Represent {i/ € neigh; by y; = Projr, i

yir = T (€4 — &) new coordinates of & in Te; M (1)

M’*\Q\ Repeat for a sample of n’ < n data points
!
A
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Local PCA

o For n, n’ sufficiently large, M can be approximated with arbitrary accuracy

So, are we done?

Some issues with LPCA

Point &; may be represented in multiple T;'s (minor)

New coordinates y; are relative to local T;

Fine for local operations like regression

Number of charts depends on extrinsic properties

Cumbersome for larger scale operations like following a curve on M
Biased in noise

2 chondy deffciont
> 4 chasts naaded
7(3, 4PcA
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N © /. Kemel PCA, MDS recap
Multi-dimensional scaling (MDS)

@ (See notes for PCA, Kernel PCA, centering matrix H, MDS for details)

@ Problem Given matrix of (squared) distances D € R"*", find a set of n points in d
dimensions Y = d X n so that

Dy = [llyi — yIPPlij = D

o Useful when
e original points are not vectors but we can compute distances (e.g string edit distances, philogenetic
distances)
o original points are in high dimensions
e original distances are geodesic distances on a manifold M

MDS Algorithm
@ Calculate K = —%HDHT

@ Compute its d principal e-vectors/values: K = V¥2VT
@ Y = XV7 are new coordinates

The Centering Matrix H

1
H = 1—=1nxn
n

Q: Could MDS be an embedding algorithm? What is different about MDS and upcoming
algorithms?
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N "cipa! Curves and Surfaces (PCS)
Principal Curves and Surfaces (PCS)

77

Elegant algorithm , most useful for d = 1 (curves)
@ Also works in noise ?7

data in RP near a curve (or set of curves)
o Goal: track the ridge of the data density (will be biased estimator of curve M)
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Principal Curves and Surfaces (PCS)

What is a density ridge

Vp=0 Vp=0 Vp =0 inspan{va.p}
VZp <0 V2p has A1 > 0, App < 0 V?p has Xaip <0, (vip e-vectors V2p)

In other words, on a ridge

@ Vp o v direction of least negative curvature (LNC) of V2p
@ Vp, v; are tangent to the ridge

f,c) wv\%chmﬂgen@fb
L astimaled logy KOE
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Gradient and Hessian for Gaussian KDE

Data &1, € RP
Let p() be the kernel density estimator with some kernel width h.

1 & -6 (=&
PO = g Sor ) = ,,dep( EZ8) o

o We prefer to work with In p which has the same critical points/ridges as p
Vinp = lVp =
V2Inp = f—Vpr + 1V2p =
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Gradient and Hessian for Gaussian KDE

o Data &;., € RP
o Let p() be the kernel density estimator with some kernel width h.
I~ -6 (E-¢&)2
PO = g Sor ) = hdz oo (-E250) s @)
o We prefer to work with In p which has the same critical points/ridges as p
e Vinp= lVp =
e V2Inp = f—Vpr + 1V2p =

B(6) = — 5l Zf~=xp( 52,,5' ) See (5 = o) @
Mean —shift
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Gradient and Hessian for Gaussian KDE

o Data &;., € RP
o Let p() be the kernel density estimator with some kernel width h.
I~ -6 (E-¢&)2
PO = g Sor ) = hdz oo (-E250) s @)
o We prefer to work with In p which has the same critical points/ridges as p
e Vinp= lVp =
e V2Inp = f—Vpr + 1V2p =
(£-6) E-&)3y, _ 1
£(6) = — sl Zs,exp( - )/Zep( E ) = —Lie-m@) )
Mean —shift

o H(&) = >0, W,u,u -g(©)e©)" -

ui= $-3
_&JL
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SCMS Algorithm

SCMS = Subspace Constrained Mean Shift

Init any ¢! Density estimated by p =data * Gaussian kernel of width h
for k=1,2,...
@ calculate g¥ o« VIn p(&X) by Mean-Shift O(nD)
Q@ H* =V’Inp(g") O(nD?)
© compute v; principal e-vector of H¥ O(D?)
Q ¢« ¢F 4 Proj, g o(D)

until convergence

@ Algorithm SCMS finds 1 point on ridge; n restarts to cover all density

o Run time o nD? /iteration
o Storage x D?
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Principal curves found by SCMS

pA )Au/f,,

Voo

=

~-SCMS ~-SCMS
LBFGS (NL 'D', m=5) LBFGS (NL'D', m=5)

LBFGS=accelerated, approximate SCMS — coming next!
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Accelerating SCMS

@ reduce dependency on n per iteration

e ignore points far away from £
e use approximate nearest neighbors (clustering, KD-trees,. . .)

o reduce number of SCMS runs: start only from n’ < n points

@ reduce number iterations: track ridge instead of cold restarts

e project Vp on v; instead of v1L
o tracking ends at critical point (peak or saddle)
o reduce dependence on D

e approximate v; without computing whole H
o D? + mD with m~5
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Non-linear dimension reduction algorithms summary

Paradigm Input Output f(new &) f~1(new p)
local PCA | &1, € RP | y1., € RY local maps v ?
(many)
Principal Curves | £1., € RP | €] "€ RP global map v N/A
SCMS (if data kept)
Embedding | &., € RP | yi., € R™ global map ad-hoc or ad-hoc or
Algorithm or € RY local maps interpolation interpolation
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Embedding algorithms

Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,. . .

@ Map D to R™ where m > d (global coordinates)
e Can also map a local neighborhood U C D to R? (local, intrinsic coordinates)

Input
embedding dimension m
neighborhood radius/kernel width e

o usually radius r = 3 X €

@ neighborhood graph
{neigh;, =;, fori=1:n}
A= [ll& — &ll]7 ;- distance matrix, with A; = oo if i & neigh;
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The Isomap algorithm

Isomap Algorithm [Tennenbaum, deSilva & Langford 00]

Input A, dimension d - Q‘lfd"lm.
@ Find all shortest path distances in neighborhood graph & W
if Aj = oo, then Aj; < graph distance between i, j

@ Construct matrix of squared distances

M = [(Aj)’]

© use Multi-Dimensional Scaling MDS(M, d) to obtain d dimensional coordinates Y for D

@ Works also for m > d
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N - o<1 olgorihms
The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix A € R"*" | bandwidth €, embedding dimension m

© Compute Laplacian L € R"%"
@ Compute eigenvectors of L for smallest m + 1 eigenvalues [¢g ¢1 ... Pm] € R"X™

@ ¢g is constant and not informative

The embedding coordinates of p; are (¢i1,- - - Pis)

|-
4!’“‘]

1 — m coonthaad = = Y

wlL
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The (renormalized) Laplacian

Laplacian

0600 ©

Input distance matris A € R"X", bandwidth ¢
2

As
Compute similarity matrix S;; = exp (—6—3) = r(Ajj/€)
Normalize columns d; = 7, S;;, L;; = S;/d;
Normalize rows df = >°7 Ly, Py =L;/d!
L=%(/-P)
Output L, d!/d;

Laplacian L central to understanding the manifold geometry
limp— oo L = Apq [Coifman,Lafon 2006]
Renormalization trick cancels effects of (non-uniform) sampling density [Coifman & Lafon 06]

Other Laplacians

L4 = diag {di:n} — [y unnormalized Laplacian
L™ = | — diag {d1.n} 1 & random walk Laplacian
"= — diag{dl;n}_1/25diag{d1;n}_1/2 normalized Laplacian
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Isomap vs. Diffusion Maps

Isomap DiffusionMap
@ Preserves geodesic distances o Distorts geodesic distances
o but only when M is flat and “data” convex o Computes only distances to nearest
o Computes all-pairs shortest paths O(n?) neighbors O(n'*)
@ Stores/processes dense matrix @ Stores/processes sparse matrix

sailat - Q. org,
Yampd - W-‘O [WMI

o t-SNE, UMAP visualization algorithms
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Heuristic algorithms

Local Linear Embedding (LLE)

one of the first embedding algorithms

later analysis showed that LLE has no limit when n — oo

closest modern version is Local Tangent Space Alignment (LTSA)

o t-Stochastic Neighbor Embedding (t-SNE)
Input similarity matrix S, embedding dimension s
Init choose embedding points y1., € R® at random
@ S; < 0, normalize rows d; = Z/ Sij, Pij = Sjj/d;
@ symmetrize P = (P + PT) P is distribution over pairs of neighbors (i, j)

@ 3 = i&(|ly: — yj||)compute similarity in output space
where 7(z) = ﬁ the Cauchy (Student t with 1 degree of freedom)

@ Define distribution Q with Q; o Sj;
P
© Change i, to decrease the Kullbach-Leibler divergence KL(P||Q) = 3=, ; PjIn g (by gradient
” ij
descent) and repeat from step 3

e t-SNE is empirically useful for visualizing clusters
o t-SNE is proved to create artefacts
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UMAP: Uniform Manifold Approximation and Projection [Mclnnes, Healy,
Melville,2018]

[N =N - =N =}

Input kK number nearest neighbors, d,
Find k-nearest neighbors
Construct (asymmetric) similarities w;;, so that >_; w; = logy k. W = [w;].
Symmetrize S = W + WT — W.x WT is similarity matrix.
Initialize embedding ¢ by LAPLACIANEIGENMAPS.
Optimize embedding.
Iteratively for njie, steps

@ Sample an edge ij with probability oc exp —dj;

@ Move ¢; towards ¢;

© Sample a random j uniformly

@ Move ¢; away from ¢/

Stochastic approximate logistic regression of ||¢; — ¢;|| on dj.

Output ¢
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Embedding algorithms summary

Many different algorithms exist
All start from neighborhood graph and distance matrix A
Most use e-vectors of a tranformation of A (preserve the sparsity pattern)

DiffusionMaps — can separate manifold shape from sampling density
LTSA — “correct” at boundaries
Isomap — best for flat manifolds with no holes, small data

Most embeddings sensitive to

o choice of radius € (within “correct” range)
e sampling density p
@ neighborhoods K-nn vs. radius

i.e. most embeddings introduce distortions
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Manifold Learning as a sandwich

Input data

ML Algorithm

Output data
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Manifold Learning as a sandwich

aﬂ'\{o\d Learning GQ

——
G1 ML Algorlthm

- \‘\

Marina Meild (UW)

@ what distance measure?

what graph? [Maier,von Luxburg, Hein 2009]

what kernel width €? [Perrault-Joncas,M,McQueen
NIPS17]

what intrinsic dimension d?

[Chen,Little, Maggioni,Rosasco | and variant by
[Perrault-Joncas,M,McQueen NIPS17]

@ what embedding dimensionmz d? [Chen,M,NeurlPS19]

ML Algorlthm DirrMaps, LTSA

o Cluster [M,Shi 00],[M,Shi 01]. .. [M NeurlPS18]

o Estimate/correct distortion: Metric Learning and
Riemannian Relaxation [McQueen, M, Perrault-Joncas
NIPS16]

Validate d, ¥l select eigenvectors] [Chen, M NeurlPS19]
Topological Data Analysis (TDA)

Meaning of coordinates [M,Koelle,Zhang, 2018,2022]

Manifolds with vector fields [Perrault-Joncas, M, 2013,
Chen, M, Kevrekidis 2021]
Finding ridges and saddle points (in progress)
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_ Metric preserving manifold leaming — Riemannian manifolds basics |
Outline

@ Metric preserving manifold learning — Riemannian manifolds basics
o Embedding algorithms introduce distortions
o Metric Manifold Learning — Intuition
@ Estimating the Riemannian metric

Marina Meild (UW) Manifold Learning
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Embedding in 2 dimensions by different manifold learning algorithms

Original data

Laplacian Eigenmaps (L
(Swiss Roll with hole)

)

id

°
Lo

Local Linear Embedding (LLE)
s

g

s e
¥h «
5%

Hessian Eigenmaps (HE)

Marina Meild (UW) Manifold Learning

Isomap

distrdion
)
e

Local Tangent Space Alignment
(LTSA)

o
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Failures vs. distortions

o Distortion vs failure
o ¢ distorts if distances, angles, density not preserved, but ¢ smooth and invertible
o If ¢ does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
o Examples: points &;, &; are not neighbors in M but are neighbors in ¢(M), or viceversa (hence ¢ is
not invertible, or not continuous)

@ Most common modes of failure

o distance matrix A does not capture topology (artificial “holes” or “bridges”)
o usually becasuse kernel width € too small or too large
o choice of e-vectors
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Artefacts

o Artefacts=features of the embedding that do not exist in the data (clusters, holes, “arms”,
“horseshoes”)

o What to beware of when you compute an embedding

o algorithms that claim to choose e automatically

o confirming the embedding is “correct” by visualization: tends to over-smooth, i.e. € over-estimated
o K-nn (default in sk-learn!) instead of radius-neighbors: tends to create clusters

o large variations in density: subsample data to make it more uniform

e “horseshoes”: choose other e-vectors (¢ is almost singulare)

@ Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural
networks

— hausmonics
el — Vouadions i

PO
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Preserving topology vs. preserving (intrinsic) geometry

o Algorithm maps data p € RP — ¢(p) = x € R™

o Mapping M — ¢(M) is diffeomorphism

preserves topology

often satisfied by embedding algorithms $O<qu‘
@ Mapping ¢ is isometry

o preserves distances along curves in M, angles, volumes
For most algorithms, in most cases, ¢ is not isometry

Preserves topology Preserves topology + intrinsic geometry
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Theoretical results in isometric embedding

Positive results
General theory
@ Nash's Theorem: Isometric embedding is possible.
@ Diffusion Maps embedding is isometric in the limit
[Berard,Besson,Gallot 94],[Portegies:16]

Special cases

@ Isomap [Bernstein, Langford, Tennenbaum 03]
recovers flat manifolds isometrically

@ LE/DM recover sphere, torus with equal radii
(sampled uniformly)

o Follows from consistency of Laplacian
eigenvectors [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10, Gine &
Koltchinskii 06]
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Negative results

Obvious negative examples
No affine recovery for normalized Laplacian
algorithms [Goldberg&al 08]

Empirically, most algorithms

preserve neighborhoods (=topology)

distort distances along manifold (=geometry)
distortions occur even in the simplest cases
distortion persists when n — oo

one cause of distortion is variations in sampling
density p; [Coifman& Lafon 06] introduced
Diffusion Maps (DM) to eliminate these

72



Metric Manifold Learning

Wanted
o eliminate distortions for any “well-behaved” M
o and any any “well-behaved” embedding ¢(M)
@ in a tractable and statistically grounded way
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Metric Manifold Learning

Wanted

eliminate distortions for any “well-behaved” M
and any any “well-behaved” embedding ¢(M)
in a tractable and statistically grounded way

Idea
Given data D C M, some embedding ¢(D) that preserves topology

(true in many cases)

Estimate distortion of ¢ and correct it!

Marina Meild (UW) Manifold Learning
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Metric Manifold Learning

Wanted

eliminate distortions for any “well-behaved” M
and any any “well-behaved” embedding ¢(M)
in a tractable and statistically grounded way

Idea
Given data D C M, some embedding ¢(D) that preserves topology
(true in many cases)

Estimate distortion of ¢ and correct it!

The correction is called the pushforward Riemannian Metric g
The distortion is the dual pushforward Riemannian Metric h
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Metric Manifold Learning — Intuition

Corrections for 3 embeddings of the same data

e N A
] . . \
’ . H . ‘\‘\n .
) . | ¥ 24 \
'
\
KR

Isomap

Laplacian Eigenmaps
19-20 May, 2022 4772
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What is a (Riemannian) metric?

In Euclidean space RY, the scalar product (u,v) = uTv

From the scalar product we derive norms ||u||? = (u, u), distances ||u — v||, angles

cos(u, v) = {u, v)/(llul[vI])

Any other scalar product on RY is defined by (u,v)g = u’ Gv = (G'/2u)T(G/?v), with
G > 0 defines the metric

o Note that whenever G = 0, H = G~! > 0 also defines a metric

On a manifold M, at each p € M we have a different G,
The function g(p) = Gp is called the Riemannian metric

3
N

7 TN
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All (intrinsic) geometric quantities on M involve g

@ Volume element on manifold G’Iz_ B
;= %ﬁo‘nah/

Vol(W) :/ NE O f
w
o Length of curve v (f

b dx’ dx/
I(y) = Sl
™) /a Z_j:gj o

@ Under a change of parametrization, g changes in a way that leaves geometric quantities
invariant
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N e e e 00 )
Calculating distances in the manifold M

Original Laplacian Eigenmaps

true distance d = 1.57

Shortest | Metric | Rel.

Embedding [If(p) — f(p")]| Path d error
Original data 1.41 1.57 1.62 3.0%
Isomap m =2 1.66 1.75 1.63 3.7%
LTSA m=2 0.07 0.08 1.65 4.8%
LEm=2 0.08 0.08 1.62 3.1%

curve v = (yo, 1, - yk) path in graph

+ G + Glyu—1)

5 (¥k — yk—1)

K
geodesic distance d = Z (Vk = yk-1)
k=0
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G for Sculpture Faces

@ n = 698 gray images of faces in D = 64 X 64 dimensions
@ head moves up/down and right/left
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Problem: Estimate the g associated with ¢

e Given:

o data set D = {py,... pn} sampled from Riemannian manifold (M, g), M C RP

o embedding {y; = ¢(pi), pi € D}
by e.g DiffusionMap, Isomap, LTSA, ...

o Estimate G; € R™X™ the pushforward Riemannian metric at p; € D
in the embedding coordinates ¢

@ The embedding {y1:n, Gi.n} will preserve the geometry of the original data
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Relation between g and A

o A = Laplace-Beltrami operator on M
o A = div - grad
2 — 5 9%
°0nC’Af_Zfa§j?
o on weighted graph with similarity matrix S, and t, = >, S,/ A = diag{t,} — S
o A = Laplace-Beltrami operator on M

o G Riemannian metric (in coordinates)
o H= G~! matrix inverse
s

(Differential geometric fact)

o L the renormalized Laplacian estimates A (very well studied v')
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Estimation of G~1

Let A be the Laplace-Beltrami operator on M, H= G~ !, and k,/ =1,2,...d.

Ak~ k(P)) (91— PN loy(pr ) = Hu(P)

Intuition:

o A applied to test functions f = ggentered geentered
o this produces H(p) in the given coordinates
@ consistent estimation of A is well studied [Coifman&Lafon 06,Hein&al 07]
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Metric Manifold Learning algorithm

Given dataset D
@ Preprocessing (construct neighborhood graph, ...)
©® Find an embedding ¢ of D into R™
© Estimate discretized Laplace-Beltrami operator L
© Estimate H, and G, = Hj} for all p

@ Fori,j=1:m,

HY = S [L(¢i * ¢)) — bi * (Ly) — bj % (Lopy)]
where X # ¥ denotes elementwise product of two vectors X, ¥ € RN
@ Forp € D, H, = [H]];
@ Forp € D, (V,X) + SVD(Hp,d) and G, = VE 'V = H (rank d (pseudo)inverse of H,)

Output (¢p, Gp) for all p
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Computational cost

n = |D|, D = data dimension,m= embedding dimension
© Neighborhood graph +
@ Similarity matrix O(n?D) (or less)
@ Laplacian O(n?)
O EMBEDDINGALG e.g. O(mn?) (eigenvector calculations)
© Embedding metric

o O(nm?) obtain g~ or At
o O(nm®) obtain g or h

Steps 1-3 are part of many embedding algorithms
Steps 3-5 independent of ambient dimension D
Matrix inversion/pseudoinverse can be performed only when needed
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Metric Manifold Learning summary

Why useful

o Measures local distortion induced by any embedding algorithm

G; = Iy when no distortion at p;
o Corrects distortion

o Integrating with the local volume/length units based on G;
o Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
@ Algorithm independent geometry preserving method
o Outputs of different algorithms on the same data are comparable
Applications
o Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]
o Helps with estimation of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco ])
o selecting eigencoordinates [Chen, M NeurlPS19]
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_ = Neigfiborhood radius and other choices |
Outline

© Neighborhood radius and other choices
o What graph? Radius-neighbors vs. k nearest-neighbors
@ What neighborhood radius/kernel bandwidth?
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_ What graph? Radius-neighbors vs. k nearest-neighbors
What graph? Radius-neighbors vs. k nearest-neighbors

@ k-nearest neighbors graph: each node has degree k
o radius neighbors graph: p, p’ neighbors iff ||p — p/|| < r

@ Does it matter?
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What graph? Radius-neighbors vs. k nearest-neighbors

@ k-nearest neighbors graph: each node has degree k
e radius neighbors graph: p, p’ neighbors iff ||[p — p'|| < r L MYIHM

@ Does it matter?

@ Yes, for estimating the Laplacian and distortion
e Why? [Hein 07, Coifman 06, Ting 10, ...] k-nearest neighbor Laplacians do not converge to
Laplace-Beltrami operator A
o but to A + 2V(log p) - V (bias due to non-uniform sampling)

radius neighbor
SR

configurations of ethanol d = 2
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Effect of re-normalization

Ln
L renormalized
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Choosing €

o Every manifold learning algorithm starts with a neighborhood graph
o Parameter ¢

e is neighborhood radius
o and/or kernel banwidth

_llp=p'11?
o recall k(p,p’) = e < if ||p— p'||? < ce and 0 otherwise (¢ € [1,10])

€ too small € too large
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Methods for choosing €

1
@ Theoretical (asymptotic) result /e o< n~ 6 [Singer06]

In practice: '/67)60’ ) me
Visual inspection? ~ >
o Cross-validation ?

o only if related to prediction task
@ [Chen&Buja09] heuristic for k-nearest neighbor graph

e unsupervised

o depends on embedding method used

e optimizes consistency of k-nn graph in data and embedding

o k-nearest neighbor graph has different convergence properties than e neighborhood
o Geometric Consistency heuristic [Perrault-Joncas&Meilal7]

o unsupervised
e optimizes Laplacian, does not require embedding

o computes “isometry” in 2 different ways and minimizes distortion between them
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_ What neighborhood radius/kernel bandwidth?
Geometric Consistency (GC): Idea

o |dea: choose € so that geometry encoded by L. is closest to data geometry

I e T 663’;EIII

@ For given € and data point p
@ Project neighbors of p onto tangent subspace

@ local embedding around p
@ approximately isometric to original data

@ Calculate Laplacian L(e€) at p and estimate distortion‘ He p I W\*'@TN‘W 'R-W\,
['s

@ He p must be & Iy identity matrix
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The distortion measure

Input: data set D, dimension d’ < d, scale €
@ Estimate Laplacian L(¢) and weights w;(€) with LAPLACIAN
@ Project data on tangent plane at p
o For each p
o Let neigh, . = {p’ € D, [|p’ — p|| < ce} where c € [1,10]
o Calculate (weighted) local PCA wLPCA(neigh, ., d") (with weights wi(e))
o Calculate coordinates z; in PCA space for points in neighw6
@ Estimate H. , € R *9" by RMETRIC
o For each p
o Use row p of L(e)
e z;'s play the role of ¢
Q@ Compute squared Loss over all p's Loss(€) = >, cp [[He,p — lq]|3
Output Loss(¢)

o Select €* = argmin_Loss(€) Distorsions versus radi

e d’ < d (more robust) .
@ minimize by 0-th order optimization (faster than grid
search)

Distorsion

2 3 4 s 67809 2 3 4
01 1
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Example € and distortion for aspirin

e Each point = a configuration of the aspirin molecule
@ Cloud of point in D = 47 dimensions embedded in m = 3 dimensions
o (only 1 cluster shown)

Stable state

1.0 — dim=1,e"=254
0.9 dim =2, "= 2.15

— dim =3, £"=2.40
0.8

0.7

0.3

0.2
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Bonus: Intrinsic Dimension Estimation in noise

o Geometric consistency + eigengap method of [Chen,Little, Maggioni,Rosasco,2011]
@ do local PCA for a range of € values
@ choose appropriate radius € (by Geometric consistency)
© dimension = largest eigengap between Ax and Mgy at radius € (proof by Chen&al)
(“largest” = most frequent largest over a sample)

Loss(e) vs. € Singular values of LPCA vs. ¢

AT

distortion
Singular values &

|

1
2
3
4
—1 5
6
\ / i :
: H — 8
V i N 10 ol
10 10
H €
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Example: Intrinsic Dimension Estimation results

00§
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0002
0008’
0000k
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Summary

ifold Lea MMing
S\a“ Go

——
G1: ML Algorlthm

i — ” o

what distance measure?

what graph? [Maier,von Luxburg, Hein 2009]

what kernel width €? [Perrault-Joncas,M,McQueen NIPS17]
what intrinsic dimension d? [Chen,Little,Maggioni,Rosasco ] and
variant by [Perrault-Joncas,M,McQueen NIPS17]

what embedding dimensionW,> d? [Chen,M,NeurlPS19]

o Cluster [M,Shi 00],[M,Shi 01]. .. [M NeurlPS18]

‘ ML Algorithm: DirrMaps, LTSA

o Estimate/correct distortion: Metric Learning and Riemannian
Relaxation [McQueen, M, Perrault-Joncas NIPS16]

Validate d )4 [select eigenvectors] [Chen, M NeurlPS19]
Topological Data Analysis (TDA)

Meaning of coordinates [M,Koelle,Zhang, 2018,2022]

Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M,
Kevrekidis 2021]
Finding ridges and saddle points (in progress)

‘Hunlzy.ul Q7
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