A tutorial on Manifold Learning for real data

The Fields Institute Workshop on Manifold and Graph-based learning

Lectures 2.3 Notes
 Marina Meilă

Department of Statistics
University of Washington

19-20 May, 2022

Outline

(1) What is manifold learning good for? \downarrow
(2) Manifolds, Coordinate Charts and Smooth Embeddings
(3) Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4 Metric preserving manifold learning - Riemannian manifolds basics $<$

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices 5
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

Non-linear dimension reduction: Three principles

Algorithm given $\mathcal{D}=\left\{\xi_{1}, \ldots \xi_{n}\right\}$ from $\mathcal{M} \subset \mathbb{R}^{D}$, map them by Algorithm f to $\left\{y_{1}, \ldots y_{n}\right\} \subset \mathbb{R}^{m}$
Assumption if points from $\mathcal{M}, n \rightarrow \infty, f$ is embedding of \mathcal{M}
(f "recovers" \mathcal{M} of arbitrary shape).
(1) Local (weighted) PCA (IPCA)

Principal Curves and Surfaces (PCS)
(3) Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...)
© [Other, heuristic] t-SNE, UMAP, LLE
What makes the problem hard?

- Intrinsic dimension d
- must be estimated (we assume we know it)
- sample complexity is exponential in d - NONPARAMETRIC
- non-uniform sampling
- volume of \mathcal{M} (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of \mathcal{M}
- curvature
- ESSENTIAL smoothness parameter: the neighborhood radius

Neighborhood graphs

- All ML algorithms start with a neighborhood graph over the data points
- neigh ${ }_{i}$ denotes the neighbors of ξ_{i}, and $k_{i}=\mid$ neigh $_{i} \mid$.
- $\Xi_{i}=\left[\xi_{i^{\prime}}\right]_{i^{\prime} \in \text { neigh }}^{i} \in \mathbb{R}^{D \times k_{i}}$ contains the coordinates of $\xi_{i^{\prime}}$'s neighbors
- In the radius-neighbor graph, the neighbors of ξ_{i} are the points within distance r from ξ_{i}, i.e. in the ball $B_{r}\left(\xi_{i}\right)$.
- In the \mathbf{k}-nearest-neighbor ($\mathbf{k}-\mathbf{n n}$) graph, they are the k nearest-neighbors of ξ_{i}.
- k-nn graph has many computational advantages
- constant degree k (or $k-1$)
- connected for any $k>1$
- more software available

- but much more difficult to use for consistent estimation of manifolds (see later, and)

data $\xi_{1}, \ldots \xi_{n} \subset \mathbb{R}^{D}$

neighborhood graph

A (sparse) matrix of distances between neighbors

Local Principal Components Analysis (LPCA)

Idea Approximate \mathcal{M} with tangent subspaces at a finite number of data points
(1) Pick a point $\xi_{i} \in \mathcal{D}$
(2) Find neigh ${ }_{i}$, perform PCA on neigh ${ }_{i} \cup\left\{\xi_{i}\right\}$ and obtain (affine) subspace with basis $T_{i} \in \mathbb{R}^{D \times d}$
(3) Represent $\xi_{i^{\prime}} \in$ neigh $_{i}$ by $y_{i}=\operatorname{Proj}_{T_{i}} \xi_{i^{\prime}}$

$$
\begin{equation*}
y_{i^{\prime}}=T_{i}^{T}\left(\xi_{i^{\prime}}-\xi_{i}\right) \quad \text { new coordinates of } \xi_{i^{\prime}} \text { in } \mathcal{T}_{\xi_{i}} \mathcal{M} \tag{1}
\end{equation*}
$$

Repeat for a sample of $n^{\prime}<n$ data points

Local PCA

- For n, n^{\prime} sufficiently large, \mathcal{M} can be approximated with arbitrary accuracy

So, are we done?
Some issues with LPCA

- Point ξ_{j} may be represented in multiple T_{i} 's (minor)
- New coordinates y_{j} are relative to local T_{i}
- Fine for local operations like regression
- Number of charts depends on extrinsic properties
- Cumbersome for larger scale operations like following a curve on \mathcal{M}
- Biased in noise

Multi-dimensional scaling (MDS)

- (See notes for PCA, Kernel PCA, centering matrix H, MDS for details)
- Problem Given matrix of (squared) distances $D \in \mathbb{R}^{n \times n}$, find a set of n points in d dimensions $Y=d \times n$ so that

$$
D_{Y}=\left[\left\|y_{i}-y_{j}\right\|^{2}\right]_{i, j} \approx D
$$

- Useful when
- original points are not vectors but we can compute distances (e.g string edit distances, philogenetic distances)
- original points are in high dimensions
- original distances are geodesic distances on a manifold \mathcal{M}

MDS Algorithm

(9) Calculate $K=-\frac{1}{2} H D H^{T}$
(2) Compute its d principal e-vectors/values: $K=V \Sigma^{2} V^{T}$
(3) $Y=\Sigma V^{T}$ are new coordinates

The Centering Matrix H

$$
H=I-\frac{1}{n} 1_{n \times n}
$$

Q: Could MDS be an embedding algorithm? What is different about MDS and upcoming algorithms?

Principal Curves and Surfaces (PCS)

??

- Elegant algorithm, most useful for $d=1$ (curves)
- Also works in noise ??
- data in \mathbb{R}^{D} near a curve (or set of curves)
- Goal: track the ridge of the data density (will be biased estimator of curve \mathcal{M})

What is a density ridge

$$
\left\lvert\, \begin{aligned}
& \nabla p=0 \\
& \nabla^{2} p \prec 0
\end{aligned}\right.
$$

$\nabla p=0$

$$
\nabla p=0 \text { in } \operatorname{span}\left\{v_{2: D}\right\}
$$

$\nabla^{2} p$ has $\lambda_{1}>0, \lambda_{2: D}<0$ $\nabla^{2} p$ has $\lambda_{2: D}<0,\left(v_{1: D}\right.$ e－vectors $\left.\nabla^{2} p\right)$

In other words，on a ridge
－$\nabla p \propto v_{1}$ direction of least negative curvature（LNC）of $\nabla^{2} p$
－$\nabla p, v_{1}$ are tangent to the ridge
$P()$ sampling density on \mathbb{R}^{D}
\rightarrow estimated by KDE

Gradient and Hessian for Gaussian KDE

- Data $\xi_{1: n} \in \mathbb{R}^{D}$
- Let $p()$ be the kernel density estimator with some kernel width h.

$$
\begin{equation*}
p(\xi)=\frac{1}{n h^{d}} \sum_{i=1}^{n} \kappa\left(\frac{\xi-\xi_{i}}{h}\right)=\frac{1}{n h^{d}} \sum_{i=1}^{n} \exp \left(-\frac{\left(\xi-\xi_{i}\right)^{2}}{2 h^{2}}\right) / \omega_{d} \tag{2}
\end{equation*}
$$

- We prefer to work with $\ln p$ which has the same critical points/ridges as p
- $\nabla \ln p=\frac{1}{p} \nabla p=g$
- $\nabla^{2} \ln p=-\frac{1}{p^{2}} \nabla p \nabla p^{T}+\frac{1}{p} \nabla^{2} p=H$

Gradient and Hessian for Gaussian KDE

- Data $\xi_{1: n} \in \mathbb{R}^{D}$
- Let $p()$ be the kernel density estimator with some kernel width h.

$$
\begin{equation*}
p(\xi)=\frac{1}{n h^{d}} \sum_{i=1}^{n} \kappa\left(\frac{\xi-\xi_{i}}{h}\right)=\frac{1}{n h^{d}} \sum_{i=1}^{n} \exp \left(-\frac{\left(\xi-\xi_{i}\right)^{2}}{2 h^{2}}\right) / \omega_{d} \tag{2}
\end{equation*}
$$

- We prefer to work with $\ln p$ which has the same critical points/ridges as p
- $\nabla \ln p=\frac{1}{p} \nabla p=g$
- $\nabla^{2} \ln p=-\frac{1}{p^{2}} \nabla p \nabla p^{T}+\frac{1}{p} \nabla^{2} p=H$

$$
\begin{equation*}
g(\xi)=-\frac{1}{h^{2}}[\xi-\sum_{i=1}^{n} \underbrace{\xi_{i}}_{w_{i}} \underbrace{\left(-\frac{\left(\xi-\xi_{i}\right)^{2}}{2 h^{2}}\right) / \sum_{i=1}^{n} \underbrace{\exp \left(-\frac{\left(\xi-\xi_{i}\right)^{2}}{2 h^{2}}\right)}_{\text {exp }}]}_{W_{i} \geq 1}=-\frac{1}{h^{2}}[\underbrace{\xi-m(\xi)}_{\text {Mean-shift }}] \tag{3}
\end{equation*}
$$

Gradient and Hessian for Gaussian KDE

- Data $\xi_{1: n} \in \mathbb{R}^{D}$
- Let $p()$ be the kernel density estimator with some kernel width h.

$$
\begin{equation*}
p(\xi)=\frac{1}{n h^{d}} \sum_{i=1}^{n} \kappa\left(\frac{\xi-\xi_{i}}{h}\right)=\frac{1}{n h^{d}} \sum_{i=1}^{n} \exp \left(-\frac{\left(\xi-\xi_{i}\right)^{2}}{2 h^{2}}\right) / \omega_{d} \tag{2}
\end{equation*}
$$

- We prefer to work with $\ln p$ which has the same critical points/ridges as p
- $\nabla \ln p=\frac{1}{p} \nabla p=g$
- $\nabla^{2} \ln p=-\frac{1}{p^{2}} \nabla p \nabla p^{T}+\frac{1}{p} \nabla^{2} p=H$
- $H(\xi)=\sum_{i=1}^{n} w_{i} u_{i} u_{i}^{T}-g(\xi) g(\xi)^{T}-\frac{1}{h^{2}} l$

$$
u_{i}=\frac{\xi_{i}-\xi}{h^{2}}
$$

SCMS Algorithm

SCMS $=$ Subspace Constrained Mean Shift

Init any ξ^{1}
Density estimated by $p=$ data \star Gaussian kernel of width h for $k=1,2, \ldots$
(1) calculate $g^{k} \propto \nabla \ln p\left(\xi^{k}\right)$
by Mean-Shift $\mathcal{O}(n D)$
(2) $H^{k}=\nabla^{2} \ln p\left(\xi^{k}\right)$
(3) compute v_{1} principal e-vector of H^{k}
$\mathcal{O}\left(n D^{2}\right)$
(9) $\xi^{k+1} \leftarrow \xi^{k}+\operatorname{Proj}_{v_{1} \perp} g^{k}$
until convergence

- Algorithm SCMS finds 1 point on ridge; n restarts to cover all density
- Run time $\propto n D^{2} /$ iteration
- Storage $\propto D^{2}$

Principal curves found by SCMS

LBFGS = accelerated, approximate SCMS - coming next!

Accelerating SCMS

- reduce dependency on n per iteration
- ignore points far away from ξ
- use approximate nearest neighbors (clustering, KD-trees,...)
- reduce number of SCMS runs: start only from $n^{\prime}<n$ points
- reduce number iterations: track ridge instead of cold restarts
- project ∇p on v_{1} instead of v_{1}^{\perp}
- tracking ends at critical point (peak or saddle)
- reduce dependence on D
- approximate v_{1} without computing whole H
- $D^{2} \leftarrow m D$ with $m \approx 5$

Non-linear dimension reduction algorithms summary

Paradigm	Input	Output	$f($ new ξ)	$f^{-1}($ new p)
local PCA	$\xi_{1: n} \in \mathbb{R}^{D}$	$y_{1: n} \in \mathbb{R}^{d}$ local maps (many)	\checkmark	?
Principal Curves SCMS	$\xi_{1: n} \in \mathbb{R}^{D}$	$\xi_{1: n}^{\prime} \in \mathbb{R}^{D}$ global map	(if data kept)	N/A
Embedding Algorithm	$\xi_{1: n} \in \mathbb{R}^{D}$	$y_{1: n} \in \mathbb{R}^{m}$ global map or $\in \mathbb{R}^{d}$ local maps	ad-hoc or interpolation	ad-hoc or interpolation
e.gkernel cegression				

Embedding algorithms

Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...

- Map \mathcal{D} to \mathbb{R}^{m} where $m \geq d$ (global coordinates)
- Can also map a local neighborhood $U \subseteq \mathcal{D}$ to \mathbb{R}^{d} (local, intrinsic coordinates)

Input

- embedding dimension m
- neighborhood radius/kernel width ϵ
- usually radius $r \approx 3 \times \epsilon$
- neighborhood graph
$\left\{\right.$ neigh $_{i}, \Xi_{i}$, for $\left.i=1: n\right\}$
$A=\left[\left\|\xi_{i}-\xi_{j}\right\|\right]_{i, j=1}^{n}$ distance matrix, with $A_{i j}=\infty$ if $i \notin$ neigh $_{j}$

The Isomap algorithm

Isomap Algorithm [Tennenbaum, deSilva \& Langford 00]
Input A, dimension d
(1) Find all shortest path distances in neighborhood graph \approx geodesic disfance if $A_{i j}=\infty$, then $A_{i j} \leftarrow$ graph distance between i, j
(2) Construct matrix of squared distances

$$
M=\left[\left(A_{i j}\right)^{2}\right]
$$

(3) use Multi-Dimensional Scaling $\operatorname{MDS}(M, d)$ to obtain d dimensional coordinates Y for \mathcal{D}

- Works also for $m>d$

The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ, embedding dimension m
(1) Compute Laplacian $L \in \mathbb{R}^{n \times n}$
(2) Compute eigenvectors of L for smallest $m+1$ eigenvalues $\left[\phi_{0} \phi_{1} \ldots \phi_{m}\right] \in \mathbb{R}^{n \times m}$

- ϕ_{0} is constant and not informative

The embedding coordinates of p_{i} are ($\phi_{i 1}, \ldots \phi_{i s}$)

The (renormalized) Laplacian

Laplacian

Input distance matris $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ
(1) Compute similarity matrix $S_{i j}=\exp \left(-\frac{A_{i j}^{2}}{\epsilon^{2}}\right)=\kappa\left(A_{i j} / \epsilon\right)$
(2) Normalize columns $d_{j}=\sum_{i=1}^{n} S_{i j}, \tilde{L}_{i j}=S_{i j} / d_{j}$
(3) Normalize rows $d_{i}^{\prime}=\sum_{j=1}^{n} \tilde{L}_{i j}, P_{i j}=\tilde{L}_{i j} / d_{i}^{\prime}$
(9) $L=\frac{1}{\epsilon^{2}}(I-P)$
(6) Output $L, d_{i}^{\prime} / d_{i}$

- Laplacian L central to understanding the manifold geometry
- $\lim _{n \rightarrow \infty} L=\Delta_{\mathcal{M}}$ [Coifman,Lafon 2006]
- Renormalization trick cancels effects of (non-uniform) sampling density [Coifman \& Lafon 06]

Other Laplacians

- $L^{u n}=\operatorname{diag}\left\{d_{1: n}\right\}-\mathbb{S}$
- $L^{r w}=I-\operatorname{diag}\left\{d_{1: n}\right\}^{-1} \leftrightarrows$
- $L^{n}=I-\operatorname{diag}\left\{d_{1: n}\right\}^{-1 / 2} \operatorname{g} d i a g\left\{d_{1: n}\right\}^{-1 / 2}$
unnormalized Laplacian
random walk Laplacian normalized Laplacian

Isomap

- Preserves geodesic distances
- but only when \mathcal{M} is flat and "data" convex
- Computes all-pairs shortest paths $\mathcal{O}\left(n^{3}\right)$
- Stores/processes dense matrix
- t-SNE, UMAP visualization algorithms

DiffusionMap

- Distorts geodesic distances
- Computes only distances to nearest neighbors $\mathcal{O}\left(n^{1+\epsilon}\right)$
- Stores/processes sparse matrix

ML Software

scikit-learn.org
mmp2.github.io/megaman

Heuristic algorithms

- Local Linear Embedding (LLE)
- one of the first embedding algorithms
- later analysis showed that LLE has no limit when $n \rightarrow \infty$
- closest modern version is Local Tangent Space Alignment (LTSA)
- t-Stochastic Neighbor Embedding (t-SNE)

Input similarity matrix S, embedding dimension s
Init choose embedding points $y_{1: n} \in \mathbb{R}^{s}$ at random
(1) $S_{i i} \leftarrow 0$, normalize rows $d_{i}=\sum_{j} S_{i j}, P_{i j}=S_{i j} / d_{i}$
(2) symmetrize $P=\frac{1}{2 n}\left(P+P^{T}\right) P$ is distribution over pairs of neighbors (i, j)
(3) $\tilde{S}_{i j}=\tilde{\kappa}\left(\left\|y_{i}-y_{j}\right\|\right)$ compute similarity in output space
where $\tilde{\kappa}(z)=\frac{1}{1+z^{2}}$ the Cauchy (Student t with 1 degree of freedom)
(9) Define distribution Q with $Q_{i j} \propto S_{i j}$
(9) Change $y_{i: n}$ to decrease the Kullbach-Leibler divergence $K L(P \| Q)=\sum_{i, j} P_{i j} \ln \frac{P_{i j}}{Q_{i j}}$ (by gradient descent) and repeat from step 3

- t-SNE is empirically useful for visualizing clusters
- t-SNE is proved to create artefacts

UMAP: Uniform Manifold Approximation and Projection [Mclnnes, Healy, Melville,2018]

Input k number nearest neighbors, d,
(1) Find k-nearest neighbors
(2) Construct (asymmetric) similarities $w_{i j}$, so that $\sum_{j} w_{i j}=\log _{2} k . W=\left[w_{i j}\right]$.
(3) Symmetrize $S=W+W^{\top}-W . * W^{\top}$ is similarity matrix.
(9) Initialize embedding ϕ by LaplacianEigenmaps.
© Optimize embedding.
Iteratively for $n_{\text {iter }}$ steps
(1) Sample an edge $i j$ with probability $\propto \exp -d_{i j}$
(2) Move ϕ_{i} towards ϕ_{j}
(3) Sample a random j^{\prime} uniformly

- Move ϕ_{i} away from $\phi_{j^{\prime}}$

Stochastic approximate logistic regression of $\left\|\phi_{i}-\phi_{j}\right\|$ on $d_{i j}$.
Output ϕ

Embedding algorithms summary

- Many different algorithms exist
- All start from neighborhood graph and distance matrix A
- Most use e-vectors of a tranformation of A (preserve the sparsity pattern)
- DiffusionMaps - can separate manifold shape from sampling density
- LTSA - "correct" at boundaries
- Isomap - best for flat manifolds with no holes, small data
- Most embeddings sensitive to
- choice of radius ϵ (within "correct" range)
- sampling density p
- neighborhoods K-nn vs. radius
i.e. most embeddings introduce distortions

Manifold Learning as a sandwich

Manifold Learning as a sandwich

- what distance measure?
- what graph? [Maier,von Luxburg, Hein 2009]
- what kernel width ϵ ? [Perrault-Joncas,M,McQueen NIPS17]
- what intrinsic dimension d ?
[Chen,Little,Maggioni,Rosasco] and variant by [Perrault-Joncas,M,McQueen NIPS17]
- what embedding dimension 1 P $\geq d$? [Chen, M,NeurIPS19] ML Algorithm: DiffMAPS, LTSA
- Cluster [M,Shi 00],[M,Shi 01]. . . [M NeurIPS18]
- Estimate/correct distortion: Metric Learning and Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Validate \boldsymbol{d}, \mathbf{A} [$[$ select eigenvectors] [Chen, M NeurIPS19]
- Topological Data Analysis (TDA)
- Meaning of coordinates [M,Koelle,Zhang, 2018,2022]
- Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M, Kevrekidis 2021]
- Finding ridges and saddle points (in progress)

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4. Metric preserving manifold learning - Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Hessian Eigenmaps (HE)

Local Linear Embedding (LLE)

Isomap

Local Tangent Space Alignment (LTSA)

affine disfoction

Failures vs. distortions

- Distortion vs failure
- ϕ distorts if distances, angles, density not preserved, but ϕ smooth and invertible
- If ϕ does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
- Examples: points ξ_{i}, ξ_{j} are not neighbors in \mathcal{M} but are neighbors in $\phi(\mathcal{M})$, or viceversa (hence ϕ is not invertible, or not continuous)
- Most common modes of failure
- distance matrix A does not capture topology (artificial "holes" or "bridges")
- usually becasuse kernel width ϵ too small or too large
- choice of e-vectors

Artefacts

- Artefacts=features of the embedding that do not exist in the data (clusters, holes, "arms", "horseshoes")
- What to beware of when you compute an embedding
- algorithms that claim to choose ϵ automatically
- confirming the embedding is "correct" by visualization: tends to over-smooth, i.e. ϵ over-estimated
- K-nn (default in sk-learn!) instead of radius-neighbors: tends to create clusters
- large variations in density: subsample data to make it more uniform
- "horseshoes": choose other e-vectors (ϕ is almost singulare)
- Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural networks

Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^{D} \longrightarrow \phi(p)=x \in \mathbb{R}^{m}$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism

- Mapping ϕ is isometry
- preserves distances along curves in \mathcal{M}, angles, volumes For most algorithms, in most cases, ϕ is not isometry

Preserves topology

Preserves topology + intrinsic geometry

Theoretical results in isometric embedding

Positive results

General theory

- Nash's Theorem: Isometric embedding is possible.
- Diffusion Maps embedding is isometric in the limit
[Berard,Besson,Gallot 94],[Portegies:16]
Special cases
- Isomap [Bernstein, Langford, Tennenbaum 03] recovers flat manifolds isometrically
- LE/DM recover sphere, torus with equal radii (sampled uniformly)
- Follows from consistency of Laplacian eigenvectors [Hein \& al 07,Coifman \& Lafon 06, Singer 06, Ting \& al 10, Gine \& Koltchinskii 06]

Negative results

- Obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg\&al 08]

Empirically, most algorithms

- preserve neighborhoods (=topology)
- distort distances along manifold (=geometry)
- distortions occur even in the simplest cases
- distortion persists when $n \rightarrow \infty$
- one cause of distortion is variations in sampling density p; [Coifman\& Lafon 06] introduced Diffusion Maps (DM) to eliminate these

Metric Manifold Learning

Wanted

- eliminate distortions for any "well-behaved" \mathcal{M}
- and any any "well-behaved" embedding $\phi(\mathcal{M})$
- in a tractable and statistically grounded way

Metric Manifold Learning

Wanted

- eliminate distortions for any "well-behaved" \mathcal{M}
- and any any "well-behaved" embedding $\phi(\mathcal{M})$
- in a tractable and statistically grounded way

Idea
Given data $\mathcal{D} \subset \mathcal{M}$, some embedding $\phi(\mathcal{D})$ that preserves topology (true in many cases)

- Estimate distortion of ϕ and correct it!

Metric Manifold Learning

Wanted

- eliminate distortions for any "well-behaved" \mathcal{M}
- and any any "well-behaved" embedding $\phi(\mathcal{M})$
- in a tractable and statistically grounded way

Idea
Given data $\mathcal{D} \subset \mathcal{M}$, some embedding $\phi(\mathcal{D})$ that preserves topology (true in many cases)

- Estimate distortion of ϕ and correct it!
- The correction is called the pushforward Riemannian Metric g $G_{i} \geqslant 0$ ran
$H_{i} \geqslant 0$
at point ic

Corrections for 3 embeddings of the same data

Laplacian Eigenmaps

What is a (Riemannian) metric?

- In Euclidean space \mathbb{R}^{d}, the scalar product $\langle u, v\rangle=u^{T} v$
- From the scalar product we derive norms $\|u\|^{2}=\langle u, u\rangle$, distances $\|u-v\|$, angles $\cos (u, v)=\langle u, v\rangle /(\|u\|\|v\|)$.
- Any other scalar product on \mathbb{R}^{d} is defined by $\langle u, v\rangle_{G}=u^{T} G v=\left(G^{1 / 2} u\right)^{T}\left(G^{1 / 2} v\right)$, with $G \succ 0$ defines the metric
- Note that whenever $G \succ 0, H=G^{-1} \succ 0$ also defines a metric
- On a manifold \mathcal{M}, at each $p \in \mathcal{M}$ we have a different G_{p}
- The function $g(p)=G_{p}$ is called the Riemannian metric

All (intrinsic) geometric quantities on \mathcal{M} involve g

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

- Length of curve γ

$$
I(\gamma)=\int_{a}^{b} \sqrt{\sum_{i j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}} d t
$$

- Under a change of parametrization, g changes in a way that leaves geometric quantities invariant

Calculating distances in the manifold \mathcal{M}

Original

Isomap

Laplacian Eigenmaps

true distance $d=1.57$							
Embedding	$\left\\|f(p)-f\left(p^{\prime}\right)\right\\|$	Shortest Path	Metric \hat{d}	Rel. error			
Original data	1.41	1.57	1.62	3.0%			
Isomap $m=2$	1.66	1.75	1.63	3.7%			
LTSA $m=2$	0.07	0.08	1.65	4.8%			
LE $m=2$	0.08	0.08	1.62	3.1%			
curve $\gamma \approx\left(y_{0}, y_{1}, \ldots y_{K}\right)$ path in graph							

$$
\text { geodesic distance } \hat{d}=\sum_{k=0}^{K} \sqrt{\left(y_{k}-y_{k-1}\right)^{T} \frac{G\left(y_{k}\right)+G\left(y_{k-1}\right)}{2}\left(y_{k}-y_{k-1}\right)}
$$

G for Sculpture Faces

- $n=698$ gray images of faces in $D=64 \times 64$ dimensions
- head moves up/down and right/left

Problem: Estimate the g associated with ϕ

- Given:
- data set $\mathcal{D}=\left\{p_{1}, \ldots p_{n}\right\}$ sampled from Riemannian manifold $\left(\mathcal{M}, g_{0}\right), \mathcal{M} \subset \mathbb{R}^{D}$
- embedding $\left\{y_{i}=\phi\left(p_{i}\right), p_{i} \in \mathcal{D}\right\}$ by e.g DiffusionMap, Isomap, LTSA, ...
- Estimate $G_{i} \in \mathbb{R}^{m \times m}$ the pushforward Riemannian metric at $p_{i} \in \mathcal{D}$ in the embedding coordinates ϕ
- The embedding $\left\{y_{1: n}, G_{1: n}\right\}$ will preserve the geometry of the original data

Relation between g and Δ

- $\Delta=$ Laplace-Beltrami operator on \mathcal{M}
- $\Delta=\operatorname{div} \cdot \operatorname{grad}$
- on $C^{2}, \Delta f=\sum_{j} \frac{\partial^{2} f}{\partial \xi_{j}^{2}}$
- on weighted graph with similarity matrix S, and $t_{p}=\sum_{p p^{\prime}} S_{p p^{\prime}}, \Delta=\operatorname{diag}\left\{t_{p}\right\}-S$
- $\Delta=$ Laplace-Beltrami operator on \mathcal{M}
- G Riemannian metric (in coordinates)
- $H=G^{-1}$ matrix inverse
(Differential geometric fact)

$$
\Delta f=\sqrt{\operatorname{det}(H)} \sum_{l} \frac{\partial}{\partial x^{\prime}}\left(\frac{1}{\sqrt{\operatorname{det}(H)}} \sum_{k} H_{l k} \frac{\partial}{\partial x^{k}} f\right)
$$

- L the renormalized Laplacian estimates Δ (very well studied \checkmark)

Estimation of G^{-1}

Let Δ be the Laplace-Beltrami operator on $\mathcal{M}, H=G^{-1}$, and $k, I=1,2, \ldots d$.

$$
\left.\frac{1}{2} \Delta\left(\phi_{k}-\phi_{k}(p)\right)\left(\phi_{l}-\phi_{l}(p)\right)\right|_{\phi_{k}(p), \phi_{l}(p)}=H_{k l}(p)
$$

Intuition:

- Δ applied to test functions $f=\phi_{k}^{\text {centered }} \phi_{l}^{\text {centered }}$
- this produces $H(p)$ in the given coordinates
- consistent estimation of Δ is well studied [Coifman\&Lafon 06,Hein\&al 07]

Metric Manifold Learning algorithm

Given dataset \mathcal{D}
(1) Preprocessing (construct neighborhood graph, ...)
(2) Find an embedding ϕ of \mathcal{D} into \mathbb{R}^{m}
(3) Estimate discretized Laplace-Beltrami operator L
(9) Estimate H_{p} and $G_{p}=H_{p}^{\dagger}$ for all p
(1) For $i, j=1: m$,
$H^{i j}=\frac{1}{2}\left[L\left(\phi_{i} * \phi_{j}\right)-\phi_{i} *\left(L \phi_{j}\right)-\phi_{j} *\left(L \phi_{i}\right)\right]$
where $X * Y$ denotes elementwise product of two vectors $X, Y \in \mathbb{R}^{N}$
(2) For $p \in \mathcal{D}, H_{p}=\left[H_{p}^{i j}\right]_{i j}$
(3) For $p \in \mathcal{D},(V, \Sigma) \leftarrow \operatorname{SVD}\left(H_{p}, d\right)$ and $G_{p}=V \Sigma^{-1} V^{T}=H_{p}^{\dagger}$ (rank d (pseudo)inverse of H_{p}) Output $\left(\phi_{p}, G_{p}\right)$ for all p

Computational cost

$n=|\mathcal{D}|, D=$ data dimension, $m=$ embedding dimension
(1) Neighborhood graph +
(2) Similarity matrix $\mathcal{O}\left(n^{2} D\right)$ (or less)
(3) Laplacian $\mathcal{O}\left(n^{2}\right)$
(9) EmbeddingAlg e.g. $\mathcal{O}\left(m n^{2}\right)$ (eigenvector calculations)

- Embedding metric
- $\mathcal{O}\left(n m^{2}\right)$ obtain g^{-1} or h^{\dagger}
- $\mathcal{O}\left(n m^{3}\right)$ obtain g or h
- Steps 1-3 are part of many embedding algorithms
- Steps 3-5 independent of ambient dimension D
- Matrix inversion/pseudoinverse can be performed only when needed

Metric Manifold Learning summary

Why useful

- Measures local distortion induced by any embedding algorithm
$G_{i}=I_{d}$ when no distortion at p_{i}
- Corrects distortion
- Integrating with the local volume/length units based on G_{i}
- Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable Applications
- Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]
- Helps with estimation of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco])
- selecting eigencoordinates [Chen, M NeurIPS19]

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4. Metric preserving manifold learning - Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

What graph? Radius-neighbors vs. k nearest-neighbors

- k-nearest neighbors graph: each node has degree k
- radius neighbors graph: p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\| \leq r$
- Does it matter?

What graph? Radius-neighbors vs. k nearest-neighbors

- k-nearest neighbors graph: each node has degree k
- radius neighbors graph: p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\| \leq r \rightarrow L$ unbiased
- Does it matter?
- Yes, for estimating the Laplacian and distortion
- Why? [Hein 07, Coifman 06, Ting 10, ...] k-nearest neighbor Laplacians do not converge to Laplace-Beltrami operator Δ
- but to $\Delta+2 \nabla(\log p) \cdot \nabla$ (bias due to non-uniform sampling)

K-nearest neighbor radius neighbor
configurations of ethanol $d=2$

Effect of re-normalization

Choosing ϵ

- Every manifold learning algorithm starts with a neighborhood graph
- Parameter ϵ
- is neighborhood radius
- and/or kernel banwidth
- recall $\kappa\left(p, p^{\prime}\right)=e^{-\frac{\left\|p-p^{\prime}\right\|^{2}}{\epsilon^{2}}}$ if $\left\|p-p^{\prime}\right\|^{2} \leq c \epsilon$ and 0 otherwise $(c \in[1,10])$

ϵ too small

ϵ too large

Methods for choosing ϵ

- Theoretical (asymptotic) result $\sqrt{\epsilon} \propto n^{-\frac{1}{d+6}}$ [Singer06]

In practice: \rightarrow tends to orecomooth

- Visual inspection?
- Cross-validation ?
- only if related to prediction task
- [Chen\&Buja09] heuristic for k-nearest neighbor graph
- unsupervised
- depends on embedding method used
- optimizes consistency of k-nn graph in data and embedding
- k-nearest neighbor graph has different convergence properties than ϵ neighborhood
- Geometric Consistency heuristic [Perrault-Joncas\&Meila17]
- unsupervised
- optimizes Laplacian, does not require embedding
- computes "isometry" in 2 different ways and minimizes distortion between them

Geometric Consistency (GC): Idea

- Idea: choose ϵ so that geometry encoded by L_{ϵ} is closest to data geometry

- For given ϵ and data point p
(1) Project neighbors of p onto tangent subspace
- local embedding around p
- approximately isometric to original data
(2) Calculate Laplacian $L(\epsilon)$ at p and estimate distortion
- $H_{\epsilon, p}$ must be $\approx I_{d}$ identity matrix
dual dual
push-forwand R.m

The distortion measure

Input: data set \mathcal{D}, dimension $d^{\prime} \leq d$, scale ϵ
(1) Estimate Laplacian $L(\epsilon)$ and weights $w_{i}(\epsilon)$ with Laplacian
(2) Project data on tangent plane at p

- For each p
- Let neigh $p_{p, \epsilon}=\left\{p^{\prime} \in \mathcal{D},\left\|p^{\prime}-p\right\| \leq c \epsilon\right\}$ where $c \in[1,10]$
- Calculate (weighted) local PCA wLPCA(neigh $_{p, \epsilon}, d^{\prime}$) (with weights $w_{i}(\epsilon)$)
- Calculate coordinates z_{i} in PCA space for points in neigh ${ }_{p, \epsilon}$
(3) Estimate $H_{\epsilon, p} \in \mathbb{R}^{d^{\prime} \times d^{\prime}}$ by RMETRIC
- For each p
- Use row p of $L(\epsilon)$
- z_{i} 's play the role of ϕ
((Compute squared Loss over all p's $\operatorname{Loss}(\epsilon)=\sum_{p \in \mathcal{D}}\left\|H_{\epsilon, p}-I_{d}\right\|_{2}^{2}$ Output Loss (ϵ)
- Select $\epsilon^{*}=\operatorname{argmin}_{\epsilon} \operatorname{Loss}(\epsilon)$
- $d^{\prime} \leq d$ (more robust)
- minimize by 0 -th order optimization (faster than grid search)

Example ϵ and distortion for aspirin

- Each point $=$ a configuration of the aspirin molecule
- Cloud of point in $D=47$ dimensions embedded in $m=3$ dimensions
- (only 1 cluster shown)

Bonus: Intrinsic Dimension Estimation in noise

- Geometric consistency + eigengap method of [Chen,Little,Maggioni,Rosasco,2011]
(1) do local PCA for a range of ϵ values
(2) choose appropriate radius ϵ (by Geometric consistency)
(3) dimension $=$ largest eigengap between λ_{k} and λ_{k+1} at radius ϵ (proof by Chen\&al) ("largest" $=$ most frequent largest over a sample)
$\operatorname{Loss}(\epsilon)$ vs. ϵ

Singular values of LPCA vs. ϵ

Example: Intrinsic Dimension Estimation results

Summary

