A tutorial on Manifold Learning for real data

The Fields Institute Workshop on Manifold and Graph-based learning

Lectures 2.3 Notes

Marina Meilă

Department of Statistics University of Washington

19-20 May, 2022

Marina Meilă (UW)

Manifold Learning

19-20 May, 2022 1 / 72

Outline

What is manifold learning good for?

💿 Manifolds, Coordinate Charts and Smooth Embeddings 🖌

💿 Non-linear dimension reduction algorithms 🗲

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

🗿 Metric preserving manifold learning – Riemannian manifolds basics🗲

- Embedding algorithms introduce distortions
- Metric Manifold Learning Intuition
- Estimating the Riemannian metric
- Seighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

イロト イヨト イヨト

Non-linear dimension reduction: Three principles

Algorithm given $\mathcal{D} = \{\xi_1, \dots, \xi_n\}$ from $\mathcal{M} \subset \mathbb{R}^D$, map them by Algorithm f to $\{y_1,\ldots,y_n\}\subset\mathbb{R}^m$ **Assumption** if points from \mathcal{M} , $n \to \infty$, f is embedding of \mathcal{M} (f "recovers" \mathcal{M} of arbitrary shape).

Local (weighted) PCA (IPCA) Principal Curves and Surfaces (PCS) Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps...)

🚽 🕘 [Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

- Intrinsic dimension d
 - must be estimated (we assume we know it)
 - sample complexity is exponential in d NONPARAMETRIC
- non-uniform sampling
- volume of \mathcal{M} (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of \mathcal{M}
- curvature

٩	• ESSENTIAL smoothness parameter: the neighborhood ra	the neighborhood radius		(Lecture 3)			
			< 🗇 >	()	(B)	. в	500

Marina Meilă (UW)

Manifold Learning

19-20 May, 2022

(Lecture 3)

(upcoming)

(next page)

Neighborhood graphs

- All ML algorithms start with a neighborhood graph over the data points
 - neigh_i denotes the neighbors of ξ_i , and $k_i = | \operatorname{neigh}_i |$.
 - $\Xi_i = [\xi_{i'}]_{i' \in \text{neigh}_i} \in \mathbb{R}^{D \times k_i}$ contains the coordinates of ξ_i 's neighbors
- In the radius-neighbor graph, the neighbors of ξ_i are the points within distance r from ξ_i, i.e. in the ball B_r(ξ_i).
- In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of ξ_i .
- k-nn graph has many computational advantages
 - constant degree k (or k-1)
 - connected for any k > 1
 - more software available
 - but much more difficult to use for consistent estimation of manifolds (see later, and)

neighborhood graph

A (sparse) matrix of distances between neighbors

< □ > < □ > < □ > < □ > < □ >

isometry

Non-linear dimension reduction algorithms Lo

Local PCA

Local Principal Components Analysis (LPCA)

Idea Approximate ${\boldsymbol{\mathcal{M}}}$ with tangent subspaces at a finite number of data points

- **1** Pick a point $\xi_i \in \mathcal{D}$
- **2** Find neigh_i, perform PCA on neigh_i $\cup \{\xi_i\}$ and obtain (affine) subspace with basis $T_i \in \mathbb{R}^{D \times d}$
- **(a)** Represent $\xi_{i'} \in \operatorname{neigh}_i$ by $y_i = \operatorname{Proj}_{T_i} \xi_{i'}$

$$y_{i'} = T_i^T(\xi_{i'} - \xi_i) \quad \text{new coordinates of } \xi_{i'} \text{ in } \mathcal{T}_{\xi_i} \mathcal{M}$$
(1)

Repeat for a sample of n' < n data points

Image: A math the second se

Local PCA

• For n, n' sufficiently large, \mathcal{M} can be approximated with arbitrary accuracy

So, are we done? Some issues with LPCA

- Point ξ_i may be represented in multiple T_i 's (minor)
- New coordinates y_i are relative to local T_i
- Fine for local operations like regression
- Number of charts depends on extrinsic properties
- $\bullet\,$ Cumbersome for larger scale operations like following a curve on ${\cal M}$
- Biased in noise

Multi-dimensional scaling (MDS)

- (See notes for PCA, Kernel PCA, centering matrix H, MDS for details)
- Problem Given matrix of (squared) distances $D \in \mathbb{R}^{n \times n}$, find a set of *n* points in *d* dimensions $Y = d \times n$ so that

$$D_Y = [||y_i - y_j||^2]_{i,j} \approx D$$

Useful when

- original points are not vectors but we can compute distances (e.g string edit distances, philogenetic distances)
- · original points are in high dimensions
- ullet original distances are geodesic distances on a manifold $\mathcal M$

MDS Algorithm

- Calculate $K = -\frac{1}{2}HDH^T$
- **2** Compute its *d* principal e-vectors/values: $K = V \Sigma^2 V^T$
- $Y = \Sigma V^T$ are new coordinates

The Centering Matrix H

$$H = I - \frac{1}{n} \mathbf{1}_{n \times n}$$

Q: Could MDS be an embedding algorithm? What is different about MDS and upcoming algorithms?

Principal Curves and Surfaces (PCS)

- Elegant algorithm , most useful for d = 1 (curves)
- Also works in noise ??
- data in \mathbb{R}^D near a curve (or set of curves)
- Goal: track the ridge of the data density (will be biased estimator of curve \mathcal{M})

イロト イヨト イヨト イヨ

What is a density ridge

In other words, on a ridge

- $\nabla p \propto v_1$ direction of least negative curvature (LNC) of $\nabla^2 p$
- $\nabla p, v_1$ are tangent to the ridge

Marina Meilă (UW)

Gradient and Hessian for Gaussian KDE

- Data $\xi_{1:n} \in \mathbb{R}^D$
- Let p() be the kernel density estimator with some kernel width h.

$$p(\xi) = \frac{1}{nh^d} \sum_{i=1}^n \kappa(\frac{\xi - \xi_i}{h}) = \frac{1}{nh^d} \sum_{i=1}^n \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \omega_d$$
(2)

- We prefer to work with ln p which has the same critical points/ridges as p
- $\nabla \ln p = \frac{1}{p} \nabla p = g$
- $\nabla^2 \ln p = -\frac{1}{p^2} \nabla p \nabla p^T + \frac{1}{p} \nabla^2 p = H$

Gradient and Hessian for Gaussian KDE

- Data $\xi_{1:n} \in \mathbb{R}^D$
- Let p() be the kernel density estimator with some kernel width h.

$$p(\xi) = \frac{1}{nh^d} \sum_{i=1}^n \kappa(\frac{\xi - \xi_i}{h}) = \frac{1}{nh^d} \sum_{i=1}^n \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \omega_d$$
(2)

• We prefer to work with $\ln p$ which has the same critical points/ridges as p

•
$$\nabla \ln p = \frac{1}{p} \nabla p = g$$

• $\nabla^2 \ln p = -\frac{1}{p^2} \nabla p \nabla p^T + \frac{1}{p} \nabla^2 p = H$
 $g(\xi) = -\frac{1}{h^2} [\xi - \sum_{i=1}^n \xi_i \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \sum_{i=1}^n \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right)] = -\frac{1}{h^2} [\xi - m(\xi)]$ (3)
 $w_i \ge w_i^* \ge w_i^* = 1$

Gradient and Hessian for Gaussian KDE

- Data $\xi_{1:n} \in \mathbb{R}^D$
- Let p() be the kernel density estimator with some kernel width h.

$$p(\xi) = \frac{1}{nh^d} \sum_{i=1}^n \kappa(\frac{\xi - \xi_i}{h}) = \frac{1}{nh^d} \sum_{i=1}^n \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \omega_d$$
(2)

- We prefer to work with $\ln p$ which has the same critical points/ridges as p
- $\nabla \ln p = \frac{1}{p} \nabla p = g$ • $\nabla^2 \ln p = -\frac{1}{p^2} \nabla p \nabla p^T + \frac{1}{p} \nabla^2 p = H$ $g(\xi) = -\frac{1}{h^2} [\xi - \sum_{i=1}^n \xi_i \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \sum_{i=1}^n \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right)] = -\frac{1}{h^2} [\xi - m(\xi)]$ (3) Mean-shift

wi

• $H(\xi) = \sum_{i=1}^{n} w_i u_i u_i^T - g(\xi)g(\xi)^T - \frac{1}{h^2}I$

イロト イヨト イヨト イヨト

SCMS Algorithm

until convergence

- Algorithm SCMS finds 1 point on ridge; n restarts to cover all density
- Run time $\propto nD^2$ /iteration
- Storage $\propto D^2$

Principal curves found by SCMS

LBFGS=accelerated, approximate SCMS - coming next!

Marina	Meilă	(UW)
--------	-------	------

イロト イヨト イヨト イヨト

Accelerating SCMS

- reduce dependency on *n* per iteration
 - ignore points far away from ξ
 - use approximate nearest neighbors (clustering, KD-trees,...)
- reduce number of SCMS runs: start only from n' < n points
- reduce number iterations: track ridge instead of cold restarts
 - project ∇p on v_1 instead of v_1^{\perp}
 - tracking ends at critical point (peak or saddle)
- reduce dependence on D
 - approximate v₁ without computing whole H
 - $D^2 \leftarrow mD$ with $m \approx 5$

イロト イ団ト イヨト イヨト

Non-linear dimension reduction algorithms summary

	Paradigm Input Output		$f(\text{new }\xi)$	$f^{-1}(\text{new }p)$	
local PCA		$\xi_{1:n} \in \mathbb{R}^D$	$y_{1:n} \in \mathbb{R}^d$ local maps	\checkmark	?
			(many)		
Principal Curves		$\xi_{1:n} \in \mathbb{R}^D$	$\xi'_{1:n} \in \mathbb{R}^D$ global map	\checkmark	N/A
	SCMS			(if data kept)	
	Embedding	$\xi_{1:n} \in \mathbb{R}^D$	$y_{1:n} \in \mathbb{R}^m$ global map	ad-hoc or	ad-hoc or
	Algorithm		or $\in \mathbb{R}^d$ local maps	interpolation	interpolation

e.g.kernel repression

< □ > < □ > < □ > < □ > < □ >

-1-

Embedding algorithms

Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...

- Map \mathcal{D} to \mathbb{R}^m where $m \geq d$ (global coordinates)
- Can also map a local neighborhood $U \subseteq \mathcal{D}$ to \mathbb{R}^d (local, intrinsic coordinates)

Input

- embedding dimension m
- neighborhood radius/kernel width ϵ
 - usually radius $r \approx 3 \times \epsilon$
- neighborhood graph

$$\{\operatorname{neigh}_i, \Xi_i, \text{ for } i = 1 : n\}$$

 $A = [||\xi_i - \xi_j||]_{i,i=1}^n$ distance matrix, with $A_{ij} = \infty$ if $i \notin \text{neigh}_i$

The Isomap algorithm

• Works also for m > d

The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ , embedding dimension m

- **()** Compute Laplacian $L \in \mathbb{R}^{n \times n}$
- **2** Compute eigenvectors of *L* for smallest m + 1 eigenvalues $[\phi_0 \phi_1 \dots \phi_m] \in \mathbb{R}^{n \times m}$
 - ϕ_0 is constant and not informative

The embedding coordinates of p_i are $(\phi_{i1}, \dots, \phi_{is})$

Embedding algorithms

The (renormalized) Laplacian

Laplacian

Input distance matris $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ

- Compute similarity matrix $S_{ij} = \exp\left(-\frac{A_{ij}^2}{\epsilon^2}\right) = \kappa(A_{ij}/\epsilon)$
- **2** Normalize columns $d_j = \sum_{i=1}^n S_{ij}$, $\tilde{L}_{ij} = S_{ij}/d_j$
- **3** Normalize rows $d'_i = \sum_{j=1}^n \tilde{L}_{ij}$, $P_{ij} = \tilde{L}_{ij}/d'_i$
- **()** $L = \frac{1}{c^2}(I P)$
- Output L, d'_i/d_i

Laplacian L central to understanding the manifold geometry

- $\lim_{n\to\infty} L = \Delta_{\mathcal{M}}$ [Coifman,Lafon 2006]
- Renormalization trick cancels effects of (non-uniform) sampling density [Coifman & Lafon 06]

Other Laplacians

•
$$L^{un} = \text{diag} \{ d_{1:n} \} - \mathbf{S}$$

•
$$L^{rw} = I - \operatorname{diag} \{ d_{1:n} \}^{-1}$$

• $L^n = I - \operatorname{diag} \{ d_{1:n} \}^{-1/2} \operatorname{diag} \{ d_{1:n} \}^{-1/2}$

unnormalized Laplacian random walk Laplacian normalized Laplacian

Isomap vs. Diffusion Maps

Isomap

- Preserves geodesic distances
 - $\bullet\,$ but only when ${\cal M}$ is flat and "data" convex
- Computes all-pairs shortest paths $\mathcal{O}(n^3)$
- Stores/processes dense matrix

• t-SNE, UMAP visualization algorithms

DiffusionMap

- Distorts geodesic distances
- Computes only distances to nearest neighbors O(n^{1+ε})
- Stores/processes sparse matrix

<u>ML Software</u> scikit-learn.org mmp2.github.io/megaman

イロト イヨト イヨト イヨト

Heuristic algorithms

- Local Linear Embedding (LLE)
- one of the first embedding algorithms
- later analysis showed that LLE has no limit when $n \to \infty$
- closest modern version is Local Tangent Space Alignment (LTSA)

• t-Stochastic Neighbor Embedding (t-SNE)

Input similarity matrix *S*, embedding dimension *s*

Init choose embedding points $y_{1:n} \in \mathbb{R}^s$ at random

- **2** symmetrize $P = \frac{1}{2n}(P + P^T) P$ is distribution over pairs of neighbors (i, j)
- § Š_{ij} = κ̃(||y_i − y_j||)compute similarity in output space where κ̃(z) = 1/(1+z²) the Cauchy (Student t with 1 degree of freedom)
- **(**) Define distribution Q with $Q_{ij} \propto S_{ij}$
- **(a)** Change $y_{i:n}$ to decrease the Kullbach-Leibler divergence $KL(P||Q) = \sum_{i,j} P_{ij} \ln \frac{P_{ij}}{Q_{ij}}$ (by gradient descent) and repeat from step 3
- t-SNE is empirically useful for visualizing clusters
- *t*-SNE is proved to create artefacts

UMAP: Uniform Manifold Approximation and Projection [McInnes, Healy, Melville,2018]

Input k number nearest neighbors, d,

- Find k-nearest neighbors
- 2 Construct (asymmetric) similarities w_{ij} , so that $\sum_{i} w_{ij} = \log_2 k$. $W = [w_{ij}]$.
- **3** Symmetrize $S = W + W^T W \cdot * W^T$ is similarity matrix.
- Initialize embedding ϕ by LAPLACIANEIGENMAPS.
- Optimize embedding.
 - Iteratively for n_{iter} steps
 - Sample an edge ij with probability $\propto \exp d_{ij}$
 - **(a)** Move ϕ_i towards ϕ_j
 - Sample a random j' uniformly
 - Move ϕ_i away from $\phi_{i'}$

Stochastic approximate logistic regression of $||\phi_i - \phi_j||$ on d_{ij} .

Output ϕ

Marina Meilă (UV	V
------------------	---

Embedding algorithms summary

- Many different algorithms exist
- All start from neighborhood graph and distance matrix A
- Most use e-vectors of a tranformation of A (preserve the sparsity pattern)
- DiffusionMaps can separate manifold shape from sampling density
- LTSA "correct" at boundaries
- Isomap best for flat manifolds with no holes, small data
- Most embeddings sensitive to
 - choice of radius ϵ (within "correct" range)
 - sampling density p
 - neighborhoods K-nn vs. radius
 - i.e. most embeddings introduce distortions

Manifold Learning as a sandwich

Manifold Learning as a sandwich

- what distance measure?
- what graph? [Maier,von Luxburg, Hein 2009]
- what kernel width ε? [Perrault-Joncas,M,McQueen NIPS17]
- what intrinsic dimension d? [Chen,Little,Maggioni,Rosasco] and variant by [Perrault-Joncas,M,McQueen NIPS17]
- what embedding dimension $M \ge d$? [Chen, M, NeurIPS19]
- ML Algorithm: DIFFMAPS, LTSA
 - Cluster [M,Shi 00], [M,Shi 01]. . . [M NeurIPS18]
 - Estimate/correct distortion: Metric Learning and Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
 - Validate d, W [select eigenvectors] [Chen, M NeurIPS19]
 - Topological Data Analysis (TDA)
 - Meaning of coordinates [M,Koelle,Zhang, 2018,2022]
 - Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M, Kevrekidis 2021]

イロン イロン イヨン イヨン

• Finding ridges and saddle points (in progress)

Outline

What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

- Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms

Metric preserving manifold learning – Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning Intuition
- Estimating the Riemannian metric
- Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

Embedding in 2 dimensions by different manifold learning algorithms

Failures vs. distortions

- Distortion vs failure
 - ϕ distorts if distances, angles, density not preserved, but ϕ smooth and invertible
 - If ϕ does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
 - Examples: points ξ_i, ξ_j are not neighbors in M but are neighbors in φ(M), or viceversa (hence φ is not invertible, or not continuous)
- Most common modes of failure
 - distance matrix A does not capture topology (artificial "holes" or "bridges")
 - usually becasuse kernel width ϵ too small or too large
 - choice of e-vectors

Artefacts

- Artefacts=features of the embedding that do not exist in the data (clusters, holes, "arms", "horseshoes")
- What to beware of when you compute an embedding
 - algorithms that claim to choose ϵ automatically
 - $\bullet\,$ confirming the embedding is "correct" by visualization: tends to over-smooth, i.e. $\epsilon\,$ over-estimated
 - K-nn (default in sk-learn!) instead of radius-neighbors: tends to create clusters
 - large variations in density: subsample data to make it more uniform
 - "horseshoes": choose other e-vectors (ϕ is almost singulare)
- Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural networks

Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^D \longrightarrow \phi(p) = x \in \mathbb{R}^m$
- Mapping M → φ(M) is diffeomorphism
 preserves topology often satisfied by embedding algorithms
 Mapping φ is isometry
 preserves distances along curves in M, angles, volumes For most algorithms, in most cases, φ is not isometry

Preserves topology

Preserves topology + intrinsic geometry

イロト イポト イヨト イヨー

Theoretical results in isometric embedding

Positive results

General theory

- Nash's Theorem: Isometric embedding is possible.
- Diffusion Maps embedding is isometric in the limit [Berard,Besson,Gallot 94],[Portegies:16]

Special cases

- Isomap [Bernstein, Langford, Tennenbaum 03] recovers flat manifolds isometrically
- LE/DM recover sphere, torus with equal radii (sampled uniformly)
 - Follows from consistency of Laplacian eigenvectors [Hein & al 07,Coifman & Lafon 06, Singer 06, Ting & al 10, Gine & Koltchinskii 06]

Negative results

- Obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg&al 08]

Empirically, most algorithms

- preserve neighborhoods (=topology)
- distort distances along manifold (=geometry)
- distortions occur even in the simplest cases
- distortion persists when $n \to \infty$
- one cause of distortion is variations in sampling density *p*; [Coifman& Lafon 06] introduced Diffusion Maps (DM) to eliminate these

Metric Manifold Learning

Wanted

- \bullet eliminate distortions for any "well-behaved" ${\cal M}$
- ullet and any any "well-behaved" embedding $\phi(\mathcal{M})$
- in a tractable and statistically grounded way

Metric Manifold Learning

Wanted

- \bullet eliminate distortions for any "well-behaved" ${\cal M}$
- ullet and any any "well-behaved" embedding $\phi(\mathcal{M})$
- in a tractable and statistically grounded way

Idea

```
Given data \mathcal{D} \subset \mathcal{M}, some embedding \phi(\mathcal{D}) that preserves topology (true in many cases)
```

• Estimate distortion of ϕ and correct it!

Metric Manifold Learning

Wanted

- \bullet eliminate distortions for any "well-behaved" ${\cal M}$
- and any any "well-behaved" embedding $\phi(\mathcal{M})$
- in a tractable and statistically grounded way

Idea

```
Given data \mathcal{D} \subset \mathcal{M}, some embedding \phi(\mathcal{D}) that preserves topology (true in many cases)
```

- Estimate distortion of ϕ and correct it!
- The correction is called the pushforward Riemannian Metric g
- The distortion is the dual pushforward Riemannian Metric h

Gi ≥o romked Hi ≥o at point'o

イロト イヨト イヨト

Corrections for 3 embeddings of the same data

What is a (Riemannian) metric?

- In Euclidean space \mathbb{R}^d , the scalar product $\langle u, v \rangle = u^T v$
- From the scalar product we derive norms $||u||^2 = \langle u, u \rangle$, distances ||u v||, angles $\cos(u, v) = \langle u, v \rangle / (||u|| ||v||)$.
- Any other scalar product on \mathbb{R}^d is defined by $\langle u, v \rangle_G = \underline{u^T G v} = (G^{1/2}u)^T (G^{1/2}v)$, with $G \succ 0$ defines the metric
- Note that whenever $G \succ 0$, $H = G^{-1} \succ 0$ also defines a metric
- On a manifold \mathcal{M} , at each $p \in \mathcal{M}$ we have a different G_p
- The function $g(p) = G_p$ is called the Riemannian metric

イロト イヨト イヨト イヨト

letric preserving manifold learning – Riemannian manifolds basics

All (intrinsic) geometric quantities on $\mathcal M$ involve g

• Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

• Length of curve γ

- $I(\gamma) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$
- $\bullet\,$ Under a change of parametrization, g changes in a way that leaves geometric quantities invariant

イロト イヨト イヨト イヨト

Calculating distances in the manifold ${\cal M}$

true distance d = 1.57

		Shortest	Metric	Rel.
Embedding	f(p) - f(p')	Path	â	error
Original data	1.41	1.57	1.62	3.0%
Isomap $m = 2$	1.66	1.75	1.63	3.7%
LTSA $m = 2$	0.07	0.08	1.65	4.8%
LE <i>m</i> = 2	0.08	0.08	1.62	3.1%

curve $\gamma \approx (y_0, y_1, \dots, y_K)$ path in graph

geodesic distance
$$\hat{d} = \sum_{k=0}^{K} \sqrt{(y_k - y_{k-1})^T \frac{G(y_k) + G(y_{k-1})}{2} (y_k - y_{k-1})}$$

G for Sculpture Faces

- n = 698 gray images of faces in $D = 64 \times 64$ dimensions
- head moves up/down and right/left

Problem: Estimate the g associated with ϕ

- Given:
 - data set $\mathcal{D} = \{p_1, \dots, p_n\}$ sampled from Riemannian manifold $(\mathcal{M}, g_0), \mathcal{M} \subset \mathbb{R}^D$
 - embedding { y_i = φ(p_i), p_i ∈ D } by e.g DiffusionMap, Isomap, LTSA, ...
- Estimate $G_i \in \mathbb{R}^{m \times m}$ the pushforward Riemannian metric at $p_i \in D$ in the embedding coordinates ϕ

• The embedding $\{y_{1:n}, G_{1:n}\}$ will preserve the geometry of the original data

イロト イヨト イヨト イヨト

Relation between g and Δ

- $\Delta = Laplace$ -Beltrami operator on \mathcal{M}
 - $\Delta = \operatorname{div} \cdot \operatorname{grad}$
 - on C^2 , $\Delta f = \sum_j \frac{\partial^2 f}{\partial \xi_i^2}$

• on weighted graph with similarity matrix S, and $t_p = \sum_{pp'} S_{pp'}$, $\Delta = \text{diag} \{ t_p \} - S$

- $\Delta = Laplace$ -Beltrami operator on \mathcal{M}
- G Riemannian metric (in coordinates)
- $\underline{H} = \underline{G}^{-1}$ matrix inverse

(Differential geometric fact)

$$\Delta f = \sqrt{\det(H)} \sum_{l} \frac{\partial}{\partial x^{l}} \left(\frac{1}{\sqrt{\det(H)}} \sum_{k} H_{lk} \frac{\partial}{\partial x^{k}} f \right)$$

• L the renormalized Laplacian estimates Δ (very well studied \checkmark)

Marina Meilă	(UW)
--------------	------

Estimation of G^{-1}

Let Δ be the Laplace-Beltrami operator on \mathcal{M} , $H = G^{-1}$, and $k, l = 1, 2, \dots d$.

$$\frac{1}{2}\Delta(\phi_k - \phi_k(p)) \left(\phi_l - \phi_l(p)\right)|_{\phi_k(p),\phi_l(p)} = H_{kl}(p)$$

Intuition:

- Δ applied to test functions $f = \phi_k^{\text{centered}} \phi_l^{\text{centered}}$
- this produces H(p) in the given coordinates
- consistent estimation of △ is well studied [Coifman&Lafon 06,Hein&al 07]

イロト イヨト イヨト イヨト

Metric Manifold Learning algorithm

Given dataset \mathcal{D}

- Preprocessing (construct neighborhood graph, ...)
- 2 Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- Stimate discretized Laplace-Beltrami operator L
- Estimate H_p and $G_p = H_p^{\dagger}$ for all p

• For i, j = 1: m, $H^{ij} = \frac{1}{2} [L(\phi_i * \phi_j) - \phi_i * (L\phi_j) - \phi_j * (L\phi_i)]$ where X * Y denotes elementwise product of two vectors X, Y $\in \mathbb{R}^N$ • For $p \in \mathcal{D}, H_p = [H_p^{ij}]_{ij}$ • For $p \in \mathcal{D}, (V, \Sigma) \leftarrow SVD(H_p, d)$ and $G_p = V\Sigma^{-1}V^T = H_p^{\dagger}$ (rank d (pseudo)inverse of H_p) Output (ϕ_p, G_p) for all p

Computational cost

```
n = |\mathcal{D}|, D = data dimension, m = embedding dimension
```

- Neighborhood graph +
- Similarity matrix $O(n^2 D)$ (or less)
- Laplacian $\mathcal{O}(n^2)$
- EMBEDDINGALG e.g. O(mn²) (eigenvector calculations)
- Embedding metric
 - $\mathcal{O}(nm^2)$ obtain g^{-1} or h^{\dagger}
 - $\mathcal{O}(nm^3)$ obtain g or h
- Steps 1-3 are part of many embedding algorithms
- Steps 3–5 independent of ambient dimension D
- Matrix inversion/pseudoinverse can be performed only when needed

イロト イヨト イヨト

Metric Manifold Learning summary

Why useful

- Measures local distortion induced by any embedding algorithm
 - $G_i = I_d$ when no distortion at p_i
- Corrects distortion
 - Integrating with the local volume/length units based on G_i
 - Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable

Applications

- Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]
- Helps with estimation of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco])
- selecting eigencoordinates [Chen, M NeurIPS19]

(日) (同) (日) (日)

Outline

- What is manifold learning good for?
- 2 Manifolds, Coordinate Charts and Smooth Embeddings
- Non-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms
 - Heuristic algorithms
- Metric preserving manifold learning Riemannian manifolds basics
 - Embedding algorithms introduce distortions
 - Metric Manifold Learning Intuition
 - Estimating the Riemannian metric
- Neighborhood radius and other choices
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

What graph? Radius-neighbors vs. k nearest-neighbors

- *k*-nearest neighbors graph: each node has degree *k*
- radius neighbors graph: p, p' neighbors iff $||p p'|| \le r$
- Does it matter?

What graph? Radius-neighbors vs. k nearest-neighbors

- k-nearest neighbors graph: each node has degree k
- radius neighbors graph: p, p' neighbors iff $||p p'|| \le r \rightarrow L$ un biased
- Does it matter?
- Yes, for estimating the Laplacian and distortion
 - Why? [Hein 07, Coifman 06, Ting 10, \dots] k-nearest neighbor Laplacians do not converge to Laplace-Beltrami operator Δ
 - but to $\Delta + 2\nabla(\log p) \cdot \nabla$ (bias due to non-uniform sampling)

Marina Meilă (UW)

Effect of re-normalization

Marina	Meilă ((UW)

Choosing ϵ

- Every manifold learning algorithm starts with a neighborhood graph
- Parameter ϵ
 - is neighborhood radius
 - and/or kernel banwidth

• recall $\kappa(p,p') = e^{-\frac{||p-p'||^2}{e^2}}$ if $||p-p'||^2 \le c\epsilon$ and 0 otherwise $(c \in [1,10])$

 ϵ too small

 ϵ too large

Marina	Meilă ((UW)

Methods for choosing ϵ

• Theoretical (asymptotic) result $\sqrt{\epsilon} \propto n^{-\frac{1}{d+6}}$ [Singer06]

• Visual inspection? -> tends to orecomposite

- Cross-validation ?
 - only if related to prediction task
- Chen&Buja09] heuristic for k-nearest neighbor graph
 - unsupervised
 - depends on embedding method used
 - optimizes consistency of k-nn graph in data and embedding
 - k-nearest neighbor graph has different convergence properties than ϵ neighborhood
- Geometric Consistency heuristic [Perrault-Joncas&Meila17]
 - unsupervised
 - optimizes Laplacian, does not require embedding
 - computes "isometry" in 2 different ways and minimizes distortion between them

イロト イヨト イヨト

Geometric Consistency (GC): Idea

• Idea: choose ϵ so that geometry encoded by L_{ϵ} is closest to data geometry

<ロト < 回 > < 回 > < 回 > < 回 >

The distortion measure

Input: data set \mathcal{D} , dimension $d' \leq d$, scale ϵ

- **(**) Estimate Laplacian $L(\epsilon)$ and weights $w_i(\epsilon)$ with LAPLACIAN
- Project data on tangent plane at p
 - For each p
 - Let $\mathsf{neigh}_{p,\epsilon} = \{p' \in \mathcal{D}, \; \|p' p\| \leq c\epsilon\}$ where $c \in [1,10]$
 - Calculate (weighted) local PCA wLPCA(neigh_{p, ϵ}, d') (with weights $w_i(\epsilon)$)
 - Calculate coordinates z_i in PCA space for points in neigh_{p, ϵ}
- **(a)** Estimate $H_{\epsilon,p} \in \mathbb{R}^{d' \times d'}$ by RMETRIC
 - For each p
 - Use row p of $L(\epsilon)$
 - z_i 's play the role of ϕ
- Output Equated Loss over all p's Loss(ε) = ∑_{p∈D} ||H_{ε,p} − I_d||²₂ Output Loss(ε)
- Select $\epsilon^* = \operatorname{argmin}_{\epsilon} \operatorname{Loss}(\epsilon)$
- $d' \leq d$ (more robust)
- minimize by 0-th order optimization (faster than grid search)

Distorsions versus radi

Example ϵ and distortion for aspirin

- Each point = a configuration of the aspirin molecule
- Cloud of point in D = 47 dimensions embedded in m = 3 dimensions
- (only 1 cluster shown)

Bonus: Intrinsic Dimension Estimation in noise

- Geometric consistency + eigengap method of [Chen,Little,Maggioni,Rosasco,2011]
 - **(1)** do local PCA for a range of ϵ values

 $Loss(\epsilon)$ vs. ϵ

- 2 choose appropriate radius ϵ (by Geometric consistency)
- dimension = largest eigengap between λ_k and λ_{k+1} at radius ε (proof by Chen&al) ("largest" = most frequent largest over a sample)

Singular values of LPCA vs. ϵ

イロト イヨト イヨト イヨト

Example: Intrinsic Dimension Estimation results

イロト イヨト イヨト イヨト

Summary

- what distance measure?
- what graph? [Maier,von Luxburg, Hein 2009]
- what kernel width ϵ ? [Perrault-Joncas,M,McQueen NIPS17]
- what intrinsic dimension d? [Chen,Little,Maggioni,Rosasco] and variant by [Perrault-Joncas,M,McQueen NIPS17]
- what embedding dimension $M \ge d$? [Chen, M, NeurIPS19]
- ML Algorithm: DIFFMAPS, LTSA
 - Cluster [M,Shi 00],[M,Shi 01]...[M NeurIPS18]
 - Estimate/correct distortion: Metric Learning and Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
 - Validate d, A [select eigenvectors] [Chen, M NeurIPS19]
 - Topological Data Analysis (TDA)
 - Meaning of coordinates [M,Koelle,Zhang, 2018,2022]
 - Manifolds with vector fields [Perrault-Joncas, M, 2013, Chen, M, Kevrekidis 2021]
 - Finding ridges and saddle points (in progress)

