A tutorial on Manifold Learning for real data

The Fields Institute Workshop on Manifold and Graph-based learning

Marina Meilă

Department of Statistics University of Washington

19-20 May, 2022

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings
(3) Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms
(4) Metric preserving manifold learning - Riemannian manifolds basics
- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4. Metric preserving manifold learning - Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

What is manifold learning good for?

- Principal Component Analysis (PCA). What is it good for? = Linear Dim.
- High \rightarrow low dim (save space, Reduction processing time,
understand \leftrightarrow more "relevout" features

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

- Preprocessed by Jacob VanderPlas and Grace Telford
- $n=675,000$ spectra $\times D=3750$ dimensions

embedding by James McQueen

Molecular configurations
aspirin molecule

When to do (non-linear) dimension reduction

- $n=698$ gray images of faces in
$D=64 \times 64$ dimensions
- head moves up/down and right/left
- With only two degrees of freedom, the faces define a 2 D manifold in the space of all 64×64 gray images

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4. Metric preserving manifold learning - Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

Manifold. Basic definitions

- manifold $M=$ set that can locally be "IN" \mathbb{R}^{\prime}
- chart

$$
U_{\text {neighborhood }} \xrightarrow{x} \vee \subseteq \mathbb{R}^{d}
$$

$x=$ coordinate chart
x diffeomorphisu
II' $\{$ all chants $\}$

- d is called intrinsic dimension of \mathcal{M}
- If the original data $p \in \mathbb{R}^{D}$, call D the ambient dimension.

Intrinsic dimension. Tangent subspace
$p \in c M$
$J_{\rho} \mathcal{M} \cong \mathbb{R}^{d}$ vector space
$J_{c} \mu=\left\{J_{p} \mathcal{M}, p \in \mathcal{M}\right\}$ tangent bundle
$J_{p} C M=\{$ tangents to curves in $C M\}$

$$
\begin{aligned}
& \left\{\frac{\partial x}{\partial u}(p), \frac{\partial x}{\partial v}(p)\right\} \in J_{p} c u \\
& x(p) \in \mathbb{R}^{d} \\
& x=\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

Embeddings

- One can circumvent using multiple charts by mapping the data into $m>d$ dimensions.
- Let $\phi: \mathcal{M} \rightarrow\left(\mathbb{R}^{m}\right)$ be a smooth function, and let $\mathcal{N}=\phi(\mathcal{M})$.
- ϕ is an embeding if the inverse $\phi^{-1}: \mathcal{N} \rightarrow \mathcal{M}$ exists and is differentiable (a diffeormorphism).

$$
\text { data } \mathbb{R}^{D} \xrightarrow{\varphi} \mathbb{R}^{m}
$$

- Whitney's Embedding Theorem (?) states that any d-dimensional smooth manifold can be embedded into $\mathbb{R}^{2 d}$.
- Hence, if $d \ll \bar{D}$, very significant dimension reductions can be achieved with a single map $\phi: \mathcal{M} \rightarrow \mathbb{R}^{m}$.
- Manifold learning algorithms aim to construct maps ϕ like the above from finite data sampled from \mathcal{M}. Cembedding algoithm

Examples of manifolds and coordinate charts
s^{1}

$$
\operatorname{dim} S^{1}=1
$$

sphere S^{2} tows generated by

$$
\downarrow
$$ 2 circles

$$
3 \text { circles }
$$

sun
Lee - Smooth Maviopls Rem. Manfred
S^{d} sphere of dim $=d$ embedded in \mathbb{R}^{d+1} $m \geq d+1$

$$
\begin{array}{r}
\therefore \quad \operatorname{dim} T^{d}=d \\
m=d+1
\end{array}
$$

- subset of \mathbb{R}^{d} mapped in \mathbb{R}^{d}

Examples of manifolds and coordinate charts

$$
\xi \in \mathbb{R}^{B} \quad S^{d}=\left\{\left\|\xi_{1: d_{1}}\right\|=1\right\}
$$

Examples of manifolds and coordinate charts

Not manifolds

- dimension not constant
- unions of manifolds that intersect
- sharp corners (non-smooth)
- many/most neural network embeddings
- manifolds can have border

Outline

(1) What is manifold learning good for?
(2) Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms

- Local PCA
- PCA, Kernel PCA, MDS recap
- Principal Curves and Surfaces (PCS)
- Embedding algorithms
- Heuristic algorithms

4. Metric preserving manifold learning - Riemannian manifolds basics

- Embedding algorithms introduce distortions
- Metric Manifold Learning - Intuition
- Estimating the Riemannian metric
(5) Neighborhood radius and other choices
- What graph? Radius-neighbors vs. k nearest-neighbors
- What neighborhood radius/kernel bandwidth?

Non-linear dimension reduction: Three principles

Algorithm given $\mathcal{D}=\left\{\xi_{1}, \ldots \xi_{n}\right\}$ from $\mathcal{M} \subset \mathbb{R}^{D}$, map them by Algorithm f to $\left\{y_{1}, \ldots y_{n}\right\} \subset \mathbb{R}^{m}$
Assumption if points from $\mathcal{M}, n \rightarrow \infty, f$ is embedding of \mathcal{M}
(f "recovers" \mathcal{M} of arbitrary shape).
(1) Local (weighted) PCA (IPCA)
(2) Principal Curves and Surfaces (PCS)
(3) Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...)
(9) [Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

- Intrinsic dimension d
- must be estimated (we assume we know it)
- sample complexity is exponential in d - NONPARAMETRIC
- non-uniform sampling
- volume of \mathcal{M} (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of \mathcal{M}
- curvature
- ESSENTIAL smoothness parameter: the neighborhood radius

Non-linear dimension reduction: Three principles \sim sampling distübution $p()$
Algorithm given $\mathcal{D}=\left\{\xi_{1}, \ldots \xi_{n}\right\}$ from $\mathcal{M} \subset \mathbb{R}^{D}$, map them by Algorithm f to $\left\{y_{1}, \ldots y_{n}\right\} \subset \mathbb{R}^{m}$
Assumption if points from $\mathcal{M}, n \rightarrow \infty, f$ is embedding of \mathcal{M} (f "recovers" \mathcal{M} of arbitrary shape).
(1) Local (weighted) PCA (IPCA)
(2) Principal Curves and Surfaces (PCS)

(3) Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...)

- [Other, heuristic] t-SNE, UMAP, LLE

What makes the problem hard?

- Intrinsic dimension d
- must be estimated (we assume we know it)

- sample complexity is exponential in d - NONPARAMETRIC
- non-uniform sampling
- volume of \mathcal{M} (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of $\mathcal{M}=\boxed{Z}$
(next page)
- curvature
- ESSENTIAL smoothness parameter: the neighborhood radius

Parametric vs. non-parametric

An example of density estimation with data $x_{1: n} \in \mathbb{R}$.
(1) Gaussian $N\left(\mu, \sigma^{2}\right)$ parametric.

- $\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}$
- Error $\mu-\hat{\mu}$ has mean 0 and standard deviation $\sigma_{\hat{\mu}}=\frac{\sigma}{\sqrt{n}} \propto n^{-1 / 2}$
- To increase accuracy $\times 10, n$ must increase $\times 10^{2}=100$
(2) Kernel density estimation (KDE), non-parametric

$$
p_{h}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \kappa\left(\frac{x_{i}-x}{h}\right)
$$

- $\kappa=N(0,1)$ the kernel, $h>0$ is the kernel width
- Accuracy for KDE $\propto n^{-2 / 5}$
- To increase accuracy $\times 10$, n must increase $\times 10^{5 / 2} \approx 316$

Model	e.g.	distribution shape	error rate	to decrease err. by 10 we need samples \times	
Parametric	$\left.N\left(\mu, \sigma^{2}\right)\right)$	fixed	$n^{-1 / 2}$	$n \times 10^{2}$	100
Non-parametric	KDE in \mathbb{R}	any	$n^{-2 / 5}$	$n \times 10^{5 / 2}$	316
	KDE in \mathbb{R}^{d}	any	$n^{-2 /(d+4)}$	$n \times 10^{(d+4) / 2}$	$1000(d=2)$
					$3163(d=3)$

Neighborhood graphs

- All ML algorithms start with a neighborhood graph over the data points
- neigh ${ }_{i}$ denotes the neighbors of ξ_{i}, and $k_{i}=\mid$ neigh $_{i} \mid$.
- $\Xi_{i}=\left[\xi_{i^{\prime}}\right]_{i^{\prime} \in \text { neigh }_{i}} \in \mathbb{R}^{D \times k_{i}}$ contains the coordinates of $\xi_{i^{\prime}}$'s neighbors
- In the radius-neighbor graph, the neighbors of ξ_{i} are the points within distance r from ξ_{i}, i.e. in the ball $B_{r}\left(\xi_{i}\right)$.
- In the \mathbf{k}-nearest-neighbor ($\mathbf{k}-\mathbf{n n}$) graph, they are the k nearest-neighbors of ξ_{i}.
- k-nn graph has many computational advantages
- constant degree k (or $k-1$)
- connected for any $k>1$
- more software available
- but much more difficult to use for consistent estimation of manifolds (see later, and)

data $\xi_{1}, \ldots \xi_{n} \subset \mathbb{R}^{D}$

neighborhood graph

A (sparse) matrix of distances between neighbors

