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Motivation, Problem Setup,
Background



Manifold Estimation

We consider this problem: recover a low dimension manifold from a
cloud of noise observation Xn = (X1, ....,Xn) in high dimensional
space. Several quantities are of great interest:

1) Manifold itselfM∗

2) Denoising estimates X̂1, ..., X̂n

3) Tangent Space Πx for every x ∈ M∗
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Previous Work

1. Aamari and Levrard[2018, 2019], Maggioni et al. [2016]:
The model is noise-free or with noise of small magnitude,
shrinks to zero as the sample size n tends to infinity.

2. Genovese et al. [2012a]:
The noise has a uniform distribution and in the direction
orthogonal to the manifold tangent space.

3. Fefferman et al. [2018]:
The noise is Gaussian noise, but the magnitude could not
exceed the reach κ of the manifold.

4. ...............................
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Motivation

In summary, there are two cases that are well studied:

• The noise is totally unknown, but extremely small noise
magnitude;

• The noise is large, but with completely known distribution.

The problem is, these assumptions are too restrictive and unlikely to
hold in practice. Could we solve the problem of manifold recovering
under weaker and more realistic assumptions on the noise?
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Model and Notations

Model:
Given an i.i.d smaple Yn = (Y1, ...,Yn), where Yi are independent
copies of a random vector Y in RD, generated from the model

Y = X+ ϵ

Here X is a random element whose distribution is supported on a
low-dim manifoldM∗ ⊂ RD,dim(M∗) = d < D, and ϵ is a full
dimensional noise.

Notations:
1. Hausdorff distance dH(·, ·):

dH(M1,M2) = inf{ϵ > 0 : M1 ⊆ M2 ⊕B(0, ϵ),M2 ⊆ M1 ⊕B(0, ϵ)}

2. M: Magnitude of the noise
3. b: Maximal deviation of the noise in tangent direction.
4. κ: The reach of the manifoldM∗.
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Reach of Manifold

labelformat=empty

For a manifold M, denote

Med(M) = {z ∈ RD|∃ p ̸= q ∈ M, ||z− p|| = ||z− q|| = d(z,M)}

The reach is defined by

τM = inf
p∈M

d(p,Med(M)) = inf
z∈Med(M)

d(z,M)
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Assumptions – A1

Regularity of the underlying manifold M∗

M∗ ∈ Md
κ ={M ⊂ RD : M is a compact, connected manifold

without a boundary,M ∈ C2,M ⊆ B(0,R),

reach(M) ≥ κ,dim(M) = d < D}
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Assumption – A2

Density of X on the manifold M∗

Denote p(x) to be the density of X:

∃ p1 ≥ p0 > 0 : ∀x ∈ M∗ p0 ≤ p(x) ≤ p1,

∃ L > 0 : ∀x, x
′ ∈ M∗ |p(x)− p(x

′
)| ≤ L||x− x

′ ||
κ .
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Assumption – A3

Noise Magnitude/Direction and Reach
There exist 0 ≤ M < κ and 0 ≤ b ≤ κ, such that

E(ϵ|X) = 0, ||ϵ|| ≤ M < κ

||Π(X)ϵ|| ≤ Mb
κ P(·|X)− almost surely,
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Assumption – A4

Upper bounds for pairs (M, b)

{
M ≤ An−

2
3d+8 ,

M3b2 ≤ ακ[(D logn
n )

4
d ∨ (DM2κ2 logn

n )
4

d+4 ]

where A and α are some positive constants.
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Assumption – A4

There are two specific cases of interest:

Maximal Admissible Magnitude:

M = M(n) ≤ An−
2

3d+8

b = b(n) ≤
√

ακ
A3/2 [(

D log n
n

)
1
d ∨ (

DM2κ2 log n
n

)
1

d+4 ]

Maximal Admissible Angle:

b = κ,M = M(n) ≤ (
D4αd+4

κd−4 )
1

3d+4 n−
4

3d+4
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Algorithm and Theoretical
Guarantee



Illumination/Intuition

Nadaraya-Watson estimator:

X̂(NW)
i =

∑n
j=1 ω

(NW)
ij Yj

∑n
j=1 ω

(NW)
ij

and ω
(NW)
ij are the smoothing weights defined by

ω
(NW)
ij = K(

||Yi −Yj||2

h2 ), 1 ≤ i, j ≤ n,

where K(·) is a smoothing kernel (could be asymmetric) and the
bandwidth h = h(n) is the hyper-parameter of the kernel.

12



Algorithm – Structure-adaptive manifold estimator

SAME

1. Assume d is known. The initial guess Π̂(0)
1 , ..., Π̂(0)

n of Π(X1), ...,Π(Xn), the number of iterations K+ 1, an
initial bandwidth h0 , the threshold τ and constant a > 1 and γ > 0 are given.

2. for k from 0 to K do

3. Compute the weights ω
(k)
ij according to the formula

ω
(k)
ij = K(

||Π̂(k)
i (Yi −Yj)||2

h2
k

)1(||Yi −Yj || ≤ τ), 1 ≤ i, j ≤ n.

4. Compute the Nadaraya-Watson estimates

X̂(k)
i =

n

∑
j=1

ω
(k)
ij Yj/(

n

∑
j=1

ω
(k)
ij ), 1 ≤ i ≤ n.

5. If k < K, for each i from 1 to n, define a set J (k)
i = {j : ||X̂(k)

j − X̂(k)
i || ≤ γhk} and compute the matrices

Σ̂(k)
i = ∑

j∈J (k)
i

(X̂(k)
i − X̂(k)

j )(X̂(k)
i − X̂(k)

j )T, 1 ≤ i ≤ n.

6. If k < K, for each i from 1 to n, define Π̂(k+1)
i as a projector onto a linear span of eigenvectors of Σ̂(k)

i ,
corresponding to the largest d eigenvalues.

7. If k < K, set hk+1 = hk/a.

return the estimates X̂1 = X̂(K)
1 , ...,hatXn = X̂(K)
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Algorithm

Figure 1: Flow Chart

14



Algorithm

Figure 2: Caption

15



Algorithm

Figure 3: Caption
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Theoretical Guarantee

Theorem 1
AssumeA1 ,S2 ,A3 ,A4 hold Let the initial guesses Π̂(0)

1 , ..., Π̂(0)
n of Π(X1), ...,Π(Xn) be such that on an event with prob at

least 1−n−1 , it holds

max
1≤i≤n

||Π̂(0)
i − Π(Xi)|| ≤

∆h0
κ

with a constant ∆, such that ∆h0 ≤ κ/4, and h0 = C0/ logn, whereC0 > 0 is an absolute constant. Choose τ = 2C0/
√
logn

and set any a ∈ (1,2]. If n is larger than a constantN∆ , depending on ∆, then there exists a choice of γ, such that afterK iterations
SAME produces estimates X̂1 , ..., X̂n , such that, with prob at least 1− 5K+4

n , it holds

max
1≤i≤n

||X̂i −Xi || ≲
Mb∨MhK ∨h2

K
κ +

√√√√ D(h2
K ∨M2) logn

nhd
K

,

max
1≤i≤n

||Π̂(K)
i − Π(Xi)|| ≲

hK
κ +h−1

K

√√√√ D(h2
K/κ2 ∨M2) logn

nhd
K

,

provided that hK ≳ ((D logn/n)1/d ∨ (DM2κ2 logn/n)1/(d+4) ) (with a sufficiently large hidden constant, which is greater
than 1). In particular, if one choose the parameter a and the number of iterationsK in such a way that
hK ≍ ((Dκ2 logn/n)1/(d+2) ∨ (DM2κ2 logn/n)1/(d+4) ) then

max
1≤i≤n

||X̂i −Xi || ≲
Mb
κ +

1
κ (Dκ2 logn/n)2/(d+2) ∨ M

κ (DM2κ2 logn/n)1/(d+4) .

If hK ≍ ((D logn/n)1/d ∨ (DM2κ2 logn/n)1/(d+4) ) then

max
1≤i≤n

||Π̂(K)
i − Π(Xi)|| ≲

1
κ (

D logn
n

)
1
d ∨ 1

κ (
DM2κ2 logn

n
)

1
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How to Choose Initial Guess?

The estimates suggested by Aamari and Levrard[2018] is:

1. For each i from 1 to n introduce

Σ̂(0)
i =

1
n− 1 ∑

j ̸=i
(Yj − X̄i)(Yj − X̄i)

T1(Yj ∈ B(Yi, h0))

2. Let Π̂(0)
i be the projector onto the linear span of the d largest

eigenvalues of Σ̂(0)
i .

Proposition 5.1 in Aamari and Levrard [2018]

Assume A1,A2,A3 hold. Set h0 ≳ (log n/n)1/d for large enough
hidden constant. Let M/h0 ≤ 1

4 and let h0 = h0(n) = o(1), as
n → ∞. Then for n large enough, with prob larger than 1− n−1, it
holds

max
1≤i≤n

||Π̂(0)
i − Π(Xi)|| ≲

h0
κ +

M
h0

.
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Theoretical Guarantee

Theorem 2
Assume A1,A2,A3,A4 hold. Consider the piecewise linear manifold estimate

M̂ = {X̂i + hKΠ̂(K)
i u : 1 ≤ i ≤ n,u ∈ B(0,1) ⊂ RD}

where Π̂(K)
i is a projector onto d-dimensional space obtained on the K-th iteration of SAME.

Then, as long as hK(logn/n)1/d , on the event with prob at least 1− 5K+5
n , it holds

dH(M̂,M∗) ≲ h2
K
κ +

√
D(h4

K/κ2 ∨M2) logn
nhd

K

In particular, if a and K are chosen such that
hK ≍ ((D logn/n)1/d ∨ (DM2κ2 logn/n)1/(d+4)), then

dH(M̂,M∗) ≲ κ−1(
D logn

n
)
2
d ∨κ−1(

DM2κ2 logn
n

)
2

d+4 .
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Theoretical Guarantee

Theorem 3

Suppose that the sample Yn = {Y1, ...,Yn}, whereM∗ ∈ Md
κ , the

density q(x) of X fulfils assumption A2 and the noise ϵ satisfies
assumption A3 with
b ≍ ((D log n/n)1/d ∨ (DM2κ2 log n/n)1/(d+4)). Then, if n is
sufficiently large and Mκ ≳ (log n/n)2/d, it holds

inf
M̂

sup
M∗∈Mdκ

EM∗dH(M̂,M∗) ≳ 1
κ (

M2κ2 log n
n

)
2

d+4 ,
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Simulation Studies



S-shaped Curve

For all the following simulation study, we use Π̂(0)
i = I and kernel

K(t) = e−t

n = 1500,M = 0.2, hk = 0.6 · 1.25−k, 0 ≤ k ≤ 7, τ = 0.9,γ = 4

Figure 4: S-shaped curve
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Swiss Roll

n = 2500,M = 1.25, hk = 3.5 · 1.25−k, 0 ≤ k ≤ 3, τ = 3.5,γ = 4

Figure 5: Swiss Roll
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Noised Circle

Figure 6: Noised Observations around Circle
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Estimation of Xi

n = 2000, hk = 0.6 · 1.25−k, τ = 0.9, gamma = 4
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Estimation of Tangent space
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Box Plot

Figure 7: Caption
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Time Complexity

Slope s ≈ 3.13 ⇒ Cost time ≈ Θ(n3.13)

Figure 8: Time Cost
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Summary and Conclusion



Advantages and Challenges

• Advantage
1. Concise and simple algorithm

2. Asymptotic optimal if the assumptions are satisfied

• Challenge

1. Polynomial time with respect to size n.

2. Take care of the chosen parameters, including Π̂(0),h0, τ and γ.
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Thanks for listening!
Any Question?
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