Skeleton Framework for Manifold Learning Tasks

Jerry Wei Department of Statistics, University of Washington and Yen-Chi Chen Department of Statistics, University of Washington

・ロト ・回ト ・ヨト ・ヨト

Outline

2 Skeleton Construction

Skeleton Construction T

Jerry Wei Department of Statistics, University of V Skeleton Framework for Manifold Learning Tasks

æ

メロト メロト メヨト メヨト

Background

Many data nowadays have a geometric structure that the input data lies on a low dimensional manifold embedded inside the large-dimensional vector space.

For various data analysis tasks to perform well, we need to understand such manifold structures of the data.

Introduction		Skeleton Construction	Tasks on Graph
Jerry Wei	Department of Statistics, University of V	Skeleton Framework for Manifold Learning Tasks	3 / 17

イロト イヨト イヨト イヨト 二日

Background

Many data nowadays have a geometric structure that the input data lies on a low dimensional manifold embedded inside the large-dimensional vector space.

For various data analysis tasks to perform well, we need to understand such manifold structures of the data.

Our line of work propose to use a graph, called *Skeleton*, to summarize the manifold structure and assist various manifold learning tasks.

Introduct	tion		
erry Wei	Department of Statistics, University of V	Skeleton Framework for Manifold Learning Tasks	3/17

Example of Skeleton Representation

Sloan Digital Sky Survey (SDSS) data with 5 covariates measuring apparent magnitude of stars from images taken using 5 photometric filters. Response is the true redshift.

Introduction		Skeleton Construction	Tasks on Graph
erry Wei	Department of Statistics, University of V	Skeleton Framework for Manifold Learning Tasks	4 / 17

Skeleton Clustering

Jerry Wei

^{5/17}

Skeleton Clustering

Algorithm Skeleton Clustering

Input: Observations X_1, \dots, X_n , number of knots k

1. Knot construction. Perform k-means clustering with a large number of k; the centers are the knots. Generally, we choose $k = [\sqrt{n}]$.

2. Edge construction. Apply the Delaunay triangulation to the knots.

3. **Edge weights construction.** Add density-based similarity weights to each edge using Voronoi density (also Face density, Tube density) approach.

4. **Knots segmentation.** Use linkage criterion to segment knots based on the edge weights into *S* groups.

5. **Assignment of labels.** Assign cluster labels to each observation based on which knot-group of the nearest knot.

イロン 不同 とくほと 不良 とう

Skeleton Regression Framework

(d) S-Kernel Regression (e) Linear Interpolation Figure: Skeleton Regression illustrated by Two Moon Data $(d=2)_{=}$

	-			
Introduct	tion			
Jerry Wei	Department of Statistics, University of V	Skeleton Framework for Manifold Learning	g Tasks	7 / 17

Our Approach: Skeleton Regression Framework

Algorithm Skeleton Regression

Input: Observations $(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_N, Y_N)$.

1. **Skeleton Construction.** Construct a skeleton representation of the input space. Knots and edges can be tuned with subject knowledge.

2. Data Projection. Project the input vectors onto the skeleton structure.

3. **Skeleton Regression Function Estimation.** Fitting nonparametric regression functions on the skeleton using kernel regression, linear interpolation, or additional methods

4. **Prediction.** Project the feature vectors of new data onto the learnt skeleton structure and use the estimated regression function for prediction.

ヘロト 人間 とくほ とくほ とう

Skeleton Construction

Introduction		Skeleton Construction	Tasks on Graph
erry Wei	Department of Statistics, University of V	Skeleton Framework for Manifold Learning Tasks	9 / 17

・ロト・日本・ヨト・ヨト・ヨー つへで

Knots Construction

- Some knots are constructed to give a concise representation of the data structure.
- In practice we use k-Means to choose $k = \lfloor \sqrt{n} \rfloor$ (subject to parameter tuning) knots, where n is the number of samples.

Introduction		Skeleton Construction	Tasks on Graph
erry Wei	Department of Statistics, University of V	Skeleton Framework for Manifold Learning Tasks	10 / 17

Edge Construction, Voronoi Cells

The Voronoi cell (?), \mathbb{C}_j , associated with knot c_j is the set of all points in \mathcal{X} whose distance to c_j is the smallest compared to other knots. That is,

$$\mathbb{C}_j = \{x \in \mathcal{X} : d(x, c_j) \le d(x, c_\ell) \ \forall l \neq j\},\$$

where d(x, y) is the usual Euclidean distance.

		Skeleton Construction	
erry Wei	Department of Statistics, University of V	Skeleton Framework for Manifold Learning Tasks	

sks on Graph

< 🗇 > <

Edge Construction, Delaunay Triangulation

- Add an edge to a pair of knots if they are neighboring with each other. In other words, an edge between (c_i, c_j) is added if $\overline{\mathbb{C}}_i \cap \overline{\mathbb{C}}_j \neq \emptyset$.
- Resulting graph is the Delaunay triangulation DT(C) (?) of knots c_1, \dots, c_k

		Skeleton Construction	
Jerry Wei	Department of Statistics, University of V	Skeleton Framework for Manifold Learning Tasks	12 / 17

Edge Weight: Voronoi Density

- Measures the similarity between knots (c_j, c_ℓ) based on the number of observations whose 2-nearest knots are c_j and c_ℓ.
- Define the 2-NN region as

$$A_{j\ell} \equiv \{x \in \mathcal{X} : d(x,c_i) > max\{d(x,c_j), d(x,c_\ell)\}, \forall i \neq j, \ell\}.$$

• The Voronoi density (VD) is defined as $S_{j\ell}^{VD} = \frac{\mathbb{P}(A_{j\ell})}{\|c_j - c_\ell\|}$.

		=
	Skeleton Construction	
Jerry Wei Department of Statistics, Univers	ty of V Skeleton Framework for Manifold Learning Tasks	13 / 1

イロト イヨト イモト イモト

- -

Edge Weight: Voronoi Density Estimation • Let $\hat{P}_n(A_{j\ell}) = \frac{1}{n} \sum_{i=1}^n I(X_i \in A_{j\ell})$ and our estimator is

$$\hat{S}_{j\ell}^{VD} = \frac{\hat{P}_n(A_{j\ell})}{\|c_j - c_\ell\|}.$$
 (1)

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

- Essentially counting points in the 2-NN region, which can be computed fast by k-d tree algorithm
- Effect of dimension small

		Skeleton Construction	
rry Wei	Department of Statistics, University of V	Skeleton Framework for Manifold Learning Tasks	14 / 17

Skeleton Segmentation

- Density-based weights are assigned to the edges.
- Use traditional clustering/segmentation methods such as the hierarchical clustering to segment the learnt skeleton structure.

Clustering: Assign cluster membership according to its nearest knot. **Regression:**

- Skeleton-based Kernel Regression
- Skeleton-based Linear Spline
- Higher-order splines

<ロ> <同> <同> < 回> < 回>

Thanks for listening!

Tasks on Graph Jerry Wei Department of Statistics, University of V Skeleton Framework for Manifold Learning Tasks

・ロト ・回 ト ・ ヨト ・ ヨト

æ

17 / 17