
Geometric Data Analysis Reading Group

Robust Optimization and Inference on
Manifolds

Paper Authors:
Lizhen Lin, Drew Lazar, Bayan
Sarpabayeva, David B. Dunson

Paper link:
https://arxiv.org/abs/2006.06843

Presented by Yikun Zhang
May 2, 2022

https://arxiv.org/abs/2006.06843


1 Background: Mean Estimation and Robust Statistics

2 Geometric Median on Manifolds

3 Robust Optimization on Manifolds

4 Simulations and Real-World Applications

Table of Contents

Yikun Zhang Robust Optimization and Inference on Manifolds 2/36



Background: Mean Estimation and Robust
Statistics
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Problem: Given a random sample {X1, ...,Xn} ∼ P, consider estimating
the population mean µ = EP(Xi) =

∫
x dP.

• We want to construct an estimator µ̂n ≡ µ̂n(X1, ...,Xn).

Most popular estimator: the sample mean µ̄n = 1
n

n∑
i=1

Xi =
∫

x dPn,

where Pn is the empirical distribution.

Consistency: By the (strong) law of large number,

lim
n→∞

µ̄n = µ with probability one.

Drawbacks:
• Require strict assumptions on P for tight confidence bounds.
• Sensitive to outliers.
• ...
1The first few slides are modified from the Breiman Lecture of NeurlPS 2021 delivered

by Gabor Lugosi (https://nips.cc/virtual/2021/invited-talk/22279).

Do We Know How to Estimate the Mean?1
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Question
Given a confidence level δ ∈ (0, 1), what is the smallest ε ≡ ε(n, δ) such that

‖µ̂n − µ‖ ≤ ε with probability at least 1− δ ?

Consider the sample mean µ̄n:
• If we know σ2 = EP(Xi − µ)2 <∞, then by Chebyshev’s inequality,

|µ̄n − µ| ≤ σ
√

1
nδ

with probability at least 1− δ. (1)

• If P is sub-Gaussian, i.e., EP exp [λ(X − µ)] ≤ exp
(
σ2λ2

2

)
, then

|µ̄n − µ| ≤ σ
√

2 log(2/δ)
n

with probability at least 1− δ. (2)

Mean Estimation: Confidence Bounds
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Theorem (Theorem 1 in Lugosi and Mendelson 2019a)

Let n > 5 be an integer, σ > 0, and δ ∈
(

e−n

2 , 1
2

)
. Then, for any mean estimator

µ̂n, there exists a distribution with mean µ ∈ R and variance σ2 > 0 such that

P

{
|µ̂n − µ| > σ

√
log (1/(2δ))

4n

}
≥ δ.

Without sub-Gaussianity (i.e., P is heavy-tailed), the
√

1/δ-bound is the
best that µ̄n can achieve:
• for any δ ∈ (0, 1), there is a distribution with variance σ2 such that

P

(
|µ̄n − µ| > σ

√
C
nδ

)
> δ for some constant C > 0.

Question: Is there any estimator µ̂n that can achieve the (sub-gaussian)√
log(1/δ)-bound (2) for all distributions with finite variance?

Mean Estimation: Heavy-Tailed Distribution
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Median-of-Means (Nemirovskij and Yudin, 1983; Jerrum et al., 1986;
Alon et al., 1999): Divide the random sample {X1, ...,Xn} into m groups
B1, ...,Bm with (roughly) equal size B = b n

mc and define

µ̂MM ≡Median (Z1, ...,Zm) , (3)

where Zi = 1
|Bi|
∑
j∈Bi

Xj for i = 1, ...,m.

• The MoM estimator is consistent as long as B→∞ as n→∞.
• For any δ ∈ (0, 1), if m = b8 log(1/δ)c, then

|µ̂MM − µ| ≤ σ
√

32 log(1/δ)
n

with probability at least 1− δ.

See Theorem 2 in Lugosi and Mendelson (2019a) and Proposition 1 in
Yen-Chi’s notes (http://faculty.washington.edu/yenchic/short_note/note_MoM.pdf).

Mean Estimation: Median-of-Means (MoM)
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• The MoM estimator attains the (sub-gaussian)
√

log(1/δ)-bound (2) for
all distributions with finite variance, and this bound is sharp.
• One undesirable point is that the number of blocks m = b8 log(1/δ)c

depends on the confidence level δ ∈ (0, 1).

• However, if τ = EP
[
(Xi − µ)3

]
<∞ exists, we may take m = 2σ3

τ

√
n

to achieve the sub-Gaussian performance; see Theorem 4 in Lugosi
and Mendelson (2019a).
• Other mean estimators that attain the sub-Gaussian bound include

• Catoni’s estimator (Catoni, 2012): the solution to
n∑

i=1
Ψ (α(Xi − y)) = 0,

where Ψ : R→ R is an increasing odd function.

• Trimmed mean (Tukey and McLaughlin, 1963): µ̂n = 1
n

n∑
i=1
φα,β(Xi)

with

φα,β(x) =


α if x < α,

x if α ≤ x ≤ β,
β if x > β.

•MoM can be used even if P only has a finite moment EP
[
|Xi − µ|1+γ

]
of order 1 + γ with γ ∈ (0, 1) (Bubeck et al., 2013; Devroye et al., 2016).

Discussions on the MoM Estimator
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More importantly, the MoM estimator is robust to outliers!
• Consider a set Ds = {Y = {Y1, ...,Yn} : |Y| = n, |X ∩ Y| = n− s}.

The robustness of µ̂n(X ) with X = {X1, ...,Xn} can be measured by
the breakdown point as (Huber, 2004):

ε∗ (µ̂n(X )) = max
{ s

n
: ||µ̂n(Y)|| <∞ for all Y ∈ Xs

}
.

• For instance, the sample mean has a breakdown point of 0 while the
median has a breakdown point of 1/2.

• The MoM estimator µ̂MM(X) has the breakdown point as m−1
2n ,

where m is the number of blocks (Rodriguez and Valdora, 2019).

Robustness of the MoM Estimator
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Let {X1, ...,Xn} be an i.i.d. sample in Rd with µ = E(Xi) and
Σ = E

[
(Xi − µ)(Xi − µ)T

]
.

• The sample mean µ̄n = 1
n

n∑
i=1

Xi does not have a sub-Gaussian

behavior for non-Gaussian and possibly heavy-tailed distributions.

Definition
We say that a mean estimator µ̂n is sub-Gaussian if, for δ ∈ (0, 1),

||µ̂n − µ|| ≤
√

Tr(Σ)

n
+

√
2λmax log(1/δ)

n
with probability at least 1−δ,

where λmax is the maximal eigenvalue of Σ and ||·|| is the Euclidean
norm in Rd.

Question: Can the (multivariate) MoM estimator attain the above
sub-Gaussian bound?

Multivariate Mean Estimation
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There is no standard notion of a median for multivariate data!

We partition the dataset {X1, ...,Xn} ⊂ Rd into m groups U1, ...,Um and
compute the within-group means Zi = 1

|Ui|
∑

j∈Ui

Xj.

• Coordinate-wise median: for any δ ∈ (0, 1), take m = b8 log(1/δ)c,

||µ̂n − µ|| ≤
√

32Tr(Σ) log(d/δ)
n

with probability at least 1− δ.

• Geometric median: µ̂n ≡ arg min
p∈Rd

1
m

m∑
j=1

∣∣∣∣p− Zj
∣∣∣∣. (It is close to the

sub-Gaussian bound.)
• The estimators that truly yield the sub-Gaussian performance are

1 Catoni-Giulini estimator (Catoni and Giulini, 2018):

µ̂n = 1
n

n∑
i=1

Xi ·min
(

1, 1
α||Xi||

)
with tuning parameter α > 0.

2 the median-of-means tournaments (Lugosi and Mendelson, 2019b).

Multivariate Median-of-Means

Yikun Zhang Robust Optimization and Inference on Manifolds 11/36



Geometric Median on Manifolds
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For a metric space (M, ρ), the geometric median p∗ of p1, ..., pm ∈M
minimizes the sum of distances to the points (Minsker, 2015):

p∗ = med(p1, ..., pm) = arg min
p∈M

1
m

m∑
k=1

ρ(p, pk). (4)

assuming that p∗ exists. It is unique (Theorem 1 in Fletcher et al. 2008)
(i) if the sectional curvatures ofM is nonpositive or
(ii) if the section curvatures ofM are bounded by ∆ > 0 and
diam(p1, ..., pm) ≤ π

2
√

∆
.

WhenM is a manifold, there are two different ways to define ρ.
1 (Extrinsic distance) Given an embedding J :M→ Rd into the

ambient space Rd,

ρ(p, q) = ||J(p)− J(q)|| with ||·|| being the Euclidean norm in Rd.

2 (Intrinsic distance) Take ρ as the geodesic distance arising from a
Riemannian structure onM.

Geometric Median on Manifolds
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To compute p∗ = arg min
p∈M

m∑
k=1

ρ(p, pk) ≡ h(p), we leverage the Ostresh’s

modification of the Weiszfeld Algorithm (Weiszfeld, 1937; Ostresh Jr,
1978; Fletcher et al., 2008):

1 Compute the (Riemannian) gradient

∇h(p) = −
m∑

k=1

Logp(pk)

ρ(p, pk)
when p 6= pk.

2 Apply the gradient descent iteration

p(t+1) ← Expp(t)

(
η′ · v(t)

)
with v(t) =

∑
k∈It

Logp(t)(pk)

ρ(p(t), pk)
·

∑
k∈It

1
ρ(p(t), pk)

−1

,

where η′ ∈ [0, 2] is the step size and It =
{

k ∈ {1, ...,m} : pk 6= p(t)
}

.

Convergence: lim
t→∞

p(t) = p∗ whenM has a nonnegative sectional
curvature.

Estimating the Geometric Median

Yikun Zhang Robust Optimization and Inference on Manifolds 14/36



Lemma (Lemma 2.1 in Minsker 2015; Lin et al. 2020)
Let p1, ..., pm ∈M and p∗ = med(p1, ..., pm) as in (4).
(a) Let ρ be the extrinsic distance of an embedding J :M→ M̃ ⊂ Rd, w ∈M,
ψ be the angle between J(w)− J(p∗) and the tangent space TJ(p∗)M̃, and

Cα =
1− α√

1− 2α cosψ − α sinψ
with α ∈

(
0, cotψ tan

ψ

2

)
.

If ρ(w, p∗) ≥ Cαε, then there exists an index set T ⊂ {1, ...,m} with |T| ≥ αm
such that ρ(pj,w) ≥ ε for any j ∈ T.

Properties of the Geometric Median
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Lemma (Continued)
Let p1, ..., pm ∈M and p∗ = med(p1, ..., pm) as in (4).
(b) Let ρ be an intrinsic distance onM with respect to some Riemannian
structure, w ∈M, the logarithm map Logp∗ be K-Lipschitz continuous from
B(w, ε) to Tp∗M, and

Cα = K(1− α)

√
1

1− 2α
with α ∈

(
0,

1
2

)
.

If ρ(w, p∗) ≥ Cαε, then there exists an index set T ⊂ {1, ...,m} with |T| ≥ αm
such that ρ(pj,w) ≥ ε for any j ∈ T.

Properties of the Geometric Median (Cont’d)

Yikun Zhang Robust Optimization and Inference on Manifolds 16/36



Proof. Let L(p) =
m∑

k=1
ρ(p, pk). Consider the geodesic curve

γ(t) = Expp∗(tv) with v = Logp∗w ∈ Tp∗M. Then,

dLp∗(v) = lim
t→0+

L(γ(t))− L(γ(0))

t
= lim

t→0+

L(γ(t))− L(p∗)
t

≥ 0,

since L(p∗) minimizes L for all p ∈M. By some algebra, one obtains that

dLp∗(v)

||v||
= −

∑
j:pj 6=p∗

〈v, vj〉
||v||

∣∣∣∣vj
∣∣∣∣ +

m∑
j=1

1{pj=p∗},

where vj = Logp∗pj. Assume, by contradiction and without the loss of
generality, that

ρ(w, pj) ≤ ε for j = 1, ..., b(1− α)mc+ 1,

while ρ(w, p∗) ≥ Cαε.

Proof of the Lemma (Sketch)
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By the Lipschitz continuity of Logp∗ from B(w, ε) to Tp∗M, for
j = 1, ..., b(1− α)mc+ 1,∣∣∣∣vj − v

∣∣∣∣ =
∣∣∣∣∣∣Logp∗pj − Logp∗w

∣∣∣∣∣∣ ≤ K · dg(pj,w) = K · ρ(pj,w) ≤ Kε.

This implies that sin(v̂j, v) ≤ K
Cα

.

pj

w

p∗

ρ(w, p∗) ≥ Cαε

ρ(w, pj) ≤ Kε

vj

v

Thus, whenever Cα > K(1− α)
√

1
1−2α , we have that

dLp∗(v)

||v||
= −

∑
j:pj 6=p∗

cos(v̂j, v)+
m∑

j=1

1{pj=p∗} ≤ −(1−α)m

√
1− K2

C2
α

+αm < 0,

which is a contradiction. �
Yikun Zhang Robust Optimization and Inference on Manifolds 18/36



There are many Riemannian manifolds with K-Lipschitz continuous
logarithm map.

1 d-dimensional sphere Sd =
{

p ∈ Rd+1 : ||p|| = 1
}

: Logp(·) on Sd is
2-Lipschitz continuous from B(p, π/2) to TpSd for all p ∈ Sd.

2 Planar shape space Σk
2 = S2k−3/S1: Logp(·) on Σk

2 is 2-Lipschitz
continuous from B(p, π/4) to TpΣk

2 for all p ∈ Sd.

3 Positive definite matrices PD(n) ⊂ Rn×n: Logp(·) is 1-Lipschitz
continuous at any p ∈ PD(n).

Riemannian Manifolds with a Lipschitz Continuous Log Map
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Robust Optimization on Manifolds
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Let Q be a probability distribution on some space X andM be a
manifold. Consider estimating the population parameter

µ = arg min
p∈M

L∗(p),

where, for some loss function L,

L∗(p) =

∫
X

L(p, x) Q(dx).

• Fréchet mean: arg min
p∈M

∫
M ρ2(p, x) Q(dx) with Q supported onM.

• Geometric median: arg min
p∈M

∫
M ρ(p, x) Q(dx) with Q supported onM.

In practice, given a random sample {X1, ...,Xn} ∼ Q, the population
parameter µ can be estimated by the empirical risk estimator

µ̂n = arg min
p∈M

1
n

n∑
i=1

L(p,Xi).

Robust Optimization on Manifolds
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Objective: µ = arg min
p∈M

∫
X L(p, x) Q(dx).

The geometric median of subset optimizers is defined as follows.
1 Divide the dataset {X1, ...,Xn} into m subsets U1, ...,Um with

(roughly) equal size bn/mc.
2 Compute µj = arg min

p∈M

1
|Uj|
∑

k∈Uj
L(p,Xk) for j = 1, ...,m.

3 The final estimator is µ̂∗ = arg min
p∈M

m∑
j=1

ρ(p, µj).

µ̂∗ inherits the desired robustness properties in estimating the
population parameter µ.

Proposed Geometric Median of Subset Optimizers
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Theorem (Theorem 3.1 in Lin et al. 2020)
Let µ1, ..., µm be some independent estimators of µ and µ∗ = med(µ1, ..., µm).

(a) If ρ(p, q) = ||J(p)− J(q)|| with J :M→ M̃ ⊂ Rd, we assume that for any
w ∈M, the angle between J(w)− J(µ∗) and the tangent space TJ(µ∗)M̃ is no

bigger than ψ̄. For any α ∈
(

0, cot ψ̄ tan ψ̄
2

)
, set C̄α = 1−α√

1−2α cos ψ̄−α sin ψ̄
.

(b) Let ρ be an intrinsic distance onM. Assume that Logµ∗ is K-Lipschitz
continuous from B(µ∗, ε) to Tµ∗M. For any α ∈

(
0, 1

2

)
, set

C̄α = K(1− α)

√
1

1− 2α
.

Under (a) or (b), if P
{
ρ(µj, µ) > ε

}
≤ η for j = 1, ...,m with η < α, then

P
{
ρ(µ∗, µ) > C̄αε

}
≤ exp [−m · φ(α, η)] ,

where φ(α, η) = (1− α) log
(

1−α
1−η

)
+ α log α

η .

Concentration Bound
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Proof. Note that when ψ < ψ̄, we have that Cα ≤ C̄α and
cot ψ̄ tan ψ̄

2 ≤ cotψ tan ψ
2 . By the previous lemma,

P
{
ρ(µ∗, µ) > C̄αε

}
≤ P {ρ(µ∗, µ) > Cαε}

≤ P

 m∑
j=1

1{ρ(µj,µ)>ε} > αm


≤ exp [−m · φ(α, η)] ,

where we leverage a coupling result (Lemma 23 in Lerasle and Oliveira
2011) and Chernoff’s bound to obtain the last inequality. �

Proof of the Theorem (Sketch)
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Recall our mean estimation problem via the MoM estimator.
1 Partition the dataset {X1, ...,Xn} ⊂ Rd into m groups U1, ...,Um and

compute the within-group means Zi = 1
|Ui|

∑
j∈Ui

Xj.

2 Define the geometric median estimator µ̂n = arg min
p∈Rd

1
m

m∑
j=1

∣∣∣∣p− Zj
∣∣∣∣.

Set α∗ = 7
18 and η∗ = 0.1. For any δ ∈ (0, 1), we take

m =

⌊
log(1/δ)
φ(α∗, η∗)

⌋
+ 1 ≤ b3.5 log(1/δ)c+ 1.

Then,

||µ̂n − µ|| ≤ 11

√
Tr(Σ) log(1.4/δ)

n
with probability at least 1− δ.

See Corollary 4.1 in Minsker (2015).

Applications of the Concentration Bound
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The geometric median of subset optimizers is µ̂∗ = arg min
p∈M

m∑
j=1

ρ(p, µj).

• Larger m =⇒ more robust and tighter concentration bound around
the population parameter µ = arg min

p∈M

∫
X L(p, x) Q(dx).

• However, the within-group sample size bn/mc should also be large
so that each subset estimator behaves well, i.e.,

P
{
ρ(µj, µ) > ε

}
≤ η for j = 1, ...,m with a small η.

For a given confidence level δ ∈ (0, 1), one can determine the number of
subsets, m, to achieve a small η.
• However, in practice, η may depend on the unknown parameter;

see Example 2 in Lin et al. (2020).

Caveats in Applying the Proposed Estimator
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Simulations and Real-World
Applications
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Problem: Estimate the intrinsic and extrinsic means of the von Mises
Fisher distribution in the presence of outliers.

vMF(µ, κ) on Rd ∼ fd(x;µ, κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
· exp(κµTx).

Computing sample statistics on {p1, ..., pn} ⊂ Sd.
• Intrinsic mean: arg min

x∈Sd

n∑
i=1

arccos2
(
xTpi

)
. By the Lagrangian multiplier,

the intrinsic mean on Sd can be obtained by a fixed-point iteration

µ(t+1) ←
∑n

i=1 γi(µ
(t))pi∣∣∣∣∑n

i=1 γi(µ(t))pi
∣∣∣∣ for t = 0, 1, ... with γi(x) =

arccos(xTpi)√
1− (xTpi)2

.

Notes: Its derivation is similar to our directional mean shift algorithm;
see Section 2.2 in Zhang and Chen (2021).

• Intrinsic median: arg min
x∈Sd

n∑
i=1

arccos
(
xTpi

)
by the modified Weiszfeld’s

algorithm.

Simulation Studies on Sd
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• Extrinsic mean: P
(

1
n

n∑
i=1

J(pi)

)
, where J :M→ M̃ ⊂ Rd is the

embedding map and P : Rd →M is the projection map. WhenM = Sd,
the extrinsic mean is

∑n
i=1 pi

||∑n
i=1 pi|| , i.e., the spherical mean.

• Extrinsic median: arg min
p∈Sd

n∑
i=1
||x− pi|| by the projected gradient descent

on Sd (Weiszfeld’s algorithm).

Evaluation metric. Repeat the simulation for several times and compute
the averages based on the following measures:
• the intrinsic distance ρ(µ∗, µ) from the true mean µ to the geometric

median of subset means µ∗.

• the average intrinsic distance ρ(µi, µ) = 1
m

m∑
k=1

ρ(µi, µ) from µ to the

subset means µk, k = 1, ...,m.

Simulation Studies on Sd (Cont’d)
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Figure 1: Estimating the mean of vMF(µ, κ = 30) on S2 with k being the number
of outliers and ρ being the intrinsic distance.

Results on S2
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Figure 2: Estimating the mean of vMF(µ, κ = 30) on S7 with k being the number
of outliers and ρ being the intrinsic distance.

Results on S7
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Principal Geodesic Analysis (Fletcher and Joshi, 2007; Lazar and Lin,
2017):

1 Compute the center of the data.
2 Successively find some orthogonal tangent vectors at the center so

that their exponentiated space best fits the data according to the
intrinsic sum of squared residuals.

Principal Geodesic Analysis (PGA)
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Robust Principal Geodesic Analysis (RPGA):
1 Divide the data {X1, ...,Xn} into m groups U1, ...,Um, compute the

within-group intrinsic mean µj, and take µ∗ = med(µ1, ..., µm).

2 Calculate Vk =
{

vec
(
Logµ∗(Xj)

)
: j ∈ Ui

}
and the sample

covariance matrix Σk of points in Vk for k = 1, ...,m.

3 Compute
Σ̂ = med (Σ1, ...,Σm) ,

where the median is taken with respect to the Frobenius norm
||A||F = Tr(ATA).

4 Compute the eigenvectors of Σ̂, {ω1, ..., ω6}, arranged in order by
largest to smallest eigenvalues.

Robust Principal Geodesic Analysis (RPGA)
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Figure 3: Average mean sum of square residuals to explanatory submanifolds
computed with k outliers to data without outliers in PD(3).

RPGA Results
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Figure 4: Median-of-means on hand shape data.

Real-World Application: Hand Shape Data
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Thank you!
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Given an i.i.d. sample {X1, ...,Xn} ⊂ Rd, we partition it into m groups
U1, ...,Um and compute the within-group means Zi = 1

|Ui|
∑

j∈Ui

Xj.

For each a ∈ Rd, let
Ta =

{
x ∈ Rd : ∃J ⊂ {1, ...,m} with |J| ≥ m/2 such that for all j ∈ J,

∣∣∣∣Zj − x
∣∣∣∣ ≤ ∣∣∣∣Zj − a

∣∣∣∣}
and define the “median-of-means tournaments” estimator by

µ̂n ∈ arg min
a∈Rd

radius(Ta),

where radius(Ta) = supx∈Ta
||x− a||.

Theorem (Lugosi and Mendelson 2019b)

Let δ ∈ (0, 1) and k = d200 log(2/δ)e. If X1, ...,Xn are i.i.d. random vectors in
Rd with mean µ ∈ Rd and covariance matrix Σ, then for all n,

||µ̂n − µ|| ≤ max

{
960

√
Tr(Σ)

n
, 240

√
λmax log(2/δ)

n

}

with probability at least (1− δ), where λmax is the maximal eigenvalue of Σ.
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