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Background: Voronoi Density Estimator
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Goal: Given observed data D = {X1, ...,Xn} ⊂ X , we want to estimate
the underlying density ρ that generates the data.

• Parametric methods: Assume that D ∼ f (x; θ) and estimate the
parameter θ by its maximum likelihood estimator or maximum a
posteriori (MAP) estimator.

• Nonparametric methods: Make no distributional/model
assumptions and learn the estimator f̂ (x) directly from D.

• Semiparametric methods: Fit a combination of the parametric and
nonparametric estimators (Olkin and Spiegelman, 1987):

g(x;π) = π · f (x; θ̂) + (1− π) · f̂ (x),

where π ∈ [0, 1] is unknown and should be estimated from D.

Density Estimation
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Partition the data space X ⊂ Rd into (uniform) grids and count the
number nk of observations falling into grid ∆k:

f̂hist(x) =
nk

n · |∆k|
with x ∈ ∆k,

where |∆k| is the Lebesgue measure of ∆k in Rd.

Figure 1: Illustrations of the histogram density estimation (Bishop, 2006).

Nonparametric Density Estimation: Histograms
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For a fixed point x ∈ X ⊂ Rd and an integer K,

f̂KNN(x) =
K

n · VK(x)
,

where VK(x) = π
d
2

Γ( d
2 +1)

· RK(x) is the volume of a d-dimensional ball

centered at x with radius RK(x) as the distance from x to its Kth nearest
neighbor in D (Loftsgaarden and Quesenberry, 1965; Zhao and Lai,
2022).

Figure 2: Illustrations of the KNN density estimation (Bishop, 2006).

Nonparametric Density Estimation: KNN
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The kernel density estimator (KDE; Chen 2017) at point x ∈ X ⊂ Rd is
defined as:

f̂h(x) =
1

nhd

n∑
i=1

K
(

x− Xi

h

)
,

where h is the bandwidth parameter and K : Rd → R+ is the kernel
function satisfying∫

Rd
K(x) dx = 1,

∫
Rd

x · K(x) dx = 0, and
∫
Rd
||x||2 K(x) dx <∞.

Some examples of the kernel function includes

• Gaussian kernel: K(x) = 1

(2π)
d
2
exp

(
− ||x||2

2

)
.

• Spherical kernel: K(x) =
Γ( d

2 +1)

π
d
2
· 1{||x||≤1}.

• Any other products of one-dimensional kernels: K(x) =
∏d

j=1 Kj(xj).

Nonparametric Density Estimation: KDE
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Figure 3: Illustrations of the kernel density estimator (Bishop, 2006).

To better capture the underlying distribution through KDE, we can also
vary the bandwidth parameter h over the data space.

Nonparametric Density Estimation: KDE II
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Key idea: Use smaller bandwidths in regions with dense data and use
larger bandwidths in regions with sparse data (Terrell and Scott, 1992):

1 Balloon estimator:

f̂1(x) =
1

n · h(x)d

n∑
i=1

K
(

x− Xi

h(x)

)
,

where the bandwidth h(x) depends on the query point x ∈ X ⊂ Rd.
Example: h(x) is the distance from x to its Kth nearest neighbor in D.

2 Sample smoothing estimator:

f̂2(x) =
1

n · h(Xi)d

n∑
i=1

K
(

x− Xi

h(Xi)

)
,

which is a mixture of individually scaled kernels centered at
X1, ...,Xn. Example: h(Xi) ∝ f̂pilot(Xi)

− 1
2 ; see Abramson (1982).

Nonparametric Density Estimation: Adaptive KDE I
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Another algorithm for constructing the sample smoothing (adaptive)
KDE (Wang and Wang, 2007):

1 Find a pilot estimator f̂h(x) = 1
nhd

n∑
i=1

K
(

x−Xi
h

)
with a fixed

bandwidth h selected by Silverman (1986); Stone (1984); Sheather
and Jones (1991).

2 Define local bandwidth factors λi, i = 1, ...,n by

λi =

(
g

f̂h(Xi)

)α

,

where g =
n∏

i=1

[̂
fh(Xi)

] 1
n

and α ∈ [0, 1] is a fixed sensitivity parameter.

3 Define the adaptive KDE f̂Ada(x) = 1
n

n∑
i=1

1
(hλi)d · K

(
x−Xi
hλi

)
.

Nonparametric Density Estimation: Adaptive KDE I
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• They suffer from bias due to the prior choice of the local geometric
structures, i.e., the shapes of grids or the contours of chosen kernels.

• This bias get worse in high-dimensional ambient space.

Figure 4: Contour plots of two Gaussian kernels (cited from Arasaratnam et al.
2007).

Drawbacks of Histogram and KDE
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Voronoi cell: Given D = {X1, ...,Xn}, the Voronoi cell of Xi is defined as:

C(Xi) = {x ∈ Rd : d(x,Xi) ≤ d(x,Xj),∀Xj ∈ D}.

The collection {C(Xi)}n
i=1 is called Voronoi tessellation generated by D.

Voronoi density estimator (VDE): It is defined (almost everywhere) on
X ⊂ Rd as (Ord, 1978):

f̂VDE(x) =
1

n · Vol(C(x))
,

where C(x) is the Voronoi cell to which the query point x belongs.

Voronoi Density Estimator
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1 Some Voronoi cells can have infinite volumes with respect to the
Lebesgue measure.

• A common solution is to restrict the measure to a fixed bounded
region A ⊂ Rd that contains D (Moradi et al., 2019).

2 Data may concentrate around a submanifold in Rd with high
codimension (Fefferman et al., 2016) and the performance of VDE
becomes highly sensitive to the choice of A.

Figure 5: Voronoi tessellation for generators distributed on a parabola in R2.

Drawbacks of the Standard VDE
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We will discuss two new extensions for the traditional VDE to resolve
the above issues.

1 Compactified Voronoi density estimator (CVDE):
• Efficient computation for Voronoi volumes.
• Feasible approach for sampling.

2 Radial Voronoi density estimator (RVDE):
• Inherit the computational benefits from CVDE.
• RVDE is continuous among the domain X .

Highlight of Today’s Paper Discussion
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Compactified Voronoi Density Estimator

Yikun Zhang Compactified and Radial Voronoi Density Estimators 16/45



Key idea: Make the measure of each cell finite by a local kernel
K : Rd × Rd → R+ with its mode at each point in D = {X1, ...,Xn}.

Compactified Voronoi Density Estimator (CVDE): It is defined (almost
everywhere) on X ⊂ Rd as (Polianskii et al., 2022):

f̂CVDE(x) =
K(p, x)

n · Volp(C(x))
,

where Volp(C(x)) =
∫

C(x) K(p, y) dy and p ∈ D is the generator of C(x),
i.e., the point in D closest to x.

• A common choice of the kernel K(p, x) ≡ K
(

p−x
h

)
is still the

Gaussian one with a bandwidth parameter h > 0 as:

K(p, x) = exp

(
−||p− x||2

2

)
.

Compactified Voronoi Density Estimator
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Figure 6: Comparison between VDE and CVDE for data in R2.

Comparisons Between VDE and CVDE
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Suppose that the true density ρ for generating {X1, ...,Xn} has its
support as Rd and K ∈ L1(Rd).

• f̂CVDE(x)
P→ f (x) for any fixed x ∈ Rd as n→∞.

• In the paper, it states that Pn(E)
P→ P(E) for any measurable set

E ⊂ Rd and Pn = f̂CVDE dx,P = ρ dx.

Pros: Compared with KDE theory, it requires mild assumptions on K, no
needs for h to vanish asymptotically, etc.

Cons: The proof follows from Portmanteau Lemma and cannot be
modified to derive the rate of convergence.

If in addition K : Rd → R+ is continuous, we have

• f̂CVDE
d→ 1

n

∑n
i=1 δXi as h→ 0, where δp is the Dirac’s measure at p.

• f̂CVDE
d→ f̂VDE as h→∞when restricting K to a bounded region A.

Theoretical Properties of CVDE
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Setup: Consider an arbitrary unit vector σ ∈ Sd−1 and point z ∈ Rd.
Define

ℓz(σ) = sup {t ≥ 0 : z + tσ ∈ C(z)} ,

where C(z) is again the Voronoi cell that contains z. If such t does not
exist, then ℓz(σ) =∞.

It can be computed as follows:

1 Denote by p ∈ D the generator closest to z and for q ∈ D \ {p}, set

ℓ
q
z(σ) =

||q− p||2

2⟨σ, q− p⟩
.

2 Take
ℓz(σ) = min

q̸=p,ℓq
z(σ)≥0

ℓ
q
z(σ)

with ℓz(σ) =∞ if ℓq
z(σ) < 0 for all q ∈ D \ {p}; see Polianskii and

Pokorny (2019) as well.

Computations of CVDE (Directional Radius)
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Recall that ℓq
z(σ) =

||q−p||2
2⟨σ,q−p⟩ and ℓz(σ) = minq ̸=p,ℓq

z(σ)≥0 ℓ
q
z(σ).

σθ

p

z

q

q′→ ℓqz(σ)

→ ℓq
′

z (σ)

Figure 7: Illustration of the directional radius involved in the volume estimation
and sampling.

Correctness of Computing ℓz(σ)
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Recall that f̂CVDE(x) =
K(p,x)

n·Volp(C(x)) with

Volp(C(x)) =
∫
Sd−1

∫ ℓp(σ)

0
K
(

tσ
h

)
· td−1 dt dσ,

where ℓp(σ) is the directional radius of C(x) starting from its generator p.

The spherical integral is approximated through a Monte Carlo method by
pre-sampling a finite set of unit vectors Σp ⊂ Sd−1 and computing

2π
d
2

|Σp| · Γ
( d

2

) ∑
σ∈Σp

∫ ℓp(σ)

0
K
(

tσ
h

)
· td−1 dt

= (2πh2)
d
2 · γ̄

(
d
2
, ℓp(σ)

)
when K is the Gaussian kernel,

where γ̄(a, z) = 1
Γ(a)

∫ z
0 ta−1e−tdt is the regularized lower incomplete

Gamma function.

Volume Estimation in CVDE
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A version of the hit-and-run sampling as:

1 Choose p = z(0) uniformly from D = {X1, ...,Xn}.

2 Construct a Markov chain {z(i)} as follows.
• Sample σ(i+1) ∈ Sd−1 uniformly.
• Sample z(i+1) from 1

Volp(C(p)) · K(p, ·) restricted to the line segment{
z(i) + tσ(i+1) : t ∈

[
−ℓz(i)(−σ(i+1)), ℓz(i)(σ

(i+1))
]}

.

3 Output the last point z(I) as one sample point from f̂CVDE after a
number I of steps.

Sampling Procedure for CVDE
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Pre-sample Σ ⊂ Rd−1 and pre-compute all ⟨σ, p⟩, ⟨q, p⟩ in time
complexity O

(
n|D|2 + n|Σ||D|

)
.

• Volume Estimation: O
(
|Σ||D|2

)
.

• Sampling procedure (hit-and-run Markov chain): O (I(|Σ|+ |D|)).

Figure 8: Illustration of the hit-and-run sampling procedure with a trajectory
length as I = 4.

Computational Complexity of CVDE
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Figure 9: Visual Comparison between samples from the CVDE and VDE when
estimating d-dimensional Gaussian distributions with d = 2, 10.

Sampling Comparison Between CVDE and VDE
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• The Monte Carlo method for approximating the volume Volp(C(x))
is slow (and even infeasible) as the dimensions grow.

• The CVDE still jumps discontinuously when crossing the boundary
of Voronoi cells.

Drawbacks of CVDE
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Radial Voronoi Density Estimator
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Recall from the definition of CVDE f̂CVDE(x) =
K(p,x)

n·Volp(C(x)) that

∫
C(x)

f̂CVDE(x) dx =

∫
Sd−1

∫ ℓp(σ)

0
td−1 f̂CVDE(p + tσ) dt dσ,

where p is the generator of C(x) (so that C(x) = C(p)) and
ℓp(σ) = sup{t ≥ 0 : p + tσ ∈ C(p)}.

Now, define a similar quantity

ℓ(x) = sup

{
t ≥ 0 : p + t · x− p

||x− p||
∈ C(p)

}
≡ ℓp

(
x− p
||x− p||

)
with x ∈ C(p) and p being the generator of C(p).
• ℓ(x) is defined for x ̸= p.
• ℓ(x) is continuous since ℓ(x) = ||x− p|| = ||x− q|| for

x ∈ C(p) ∩ C(q).

Radial Voronoi Density Estimator I
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Given a continuous and strictly decreasing kernel K̃ : [−δ,∞)→ [0,∞)

with some δ > 0 and
∫∞

0 td−1K̃(t) dt <∞, the radial Voronoi density
estimator (RVDE) is defined as:

f̂RVDE(x) =
K̃ (β(ℓ(x)) · ||x− p||)

αn · Volp(Sd−1)
=

2π
d
2 · K̃ (β(ℓ(x)) · ||x− p||)

αn · Γ
( d

2

) ,

where α > 0 is a hyperparameter and β : R+ → R is a continuous
function to be determined.

The idea is quite similar to the Face Density for an edge weights in
Wei and Chen (2023).

Radial Voronoi Density Estimator II
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Radial Voronoi Density Estimator II
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Figure 10: Comparisons between KDE, VDE, CVDE, and RVDE for data in R2.

Comparisons Between KDE, VDE, CVDE, and RVDE
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Recall that the kernel K̃ : [−δ,∞)→ [0,∞) for RVDE is required to be
continuous and strictly decreasing with

∫∞
0 td−1K̃(t) dt <∞.

• Exponential: K̃(t) = e−t with δ <∞.

• Rational: K̃(t) = 1
(t+1)k with k > d and δ < 1.

To identify the function β, we constrain
∫

C(x) f̂RVDE(x) dx = 1
n so that

∫ ℓ

0
td−1 · K̃ (β(ℓ) · t) dt = α (1)

for every ℓ > 0. When K̃ is strictly decreasing, Eq.(1) has a unique
solution β(ℓ) > − δ

ℓ .

Example: When d = 1 and K̃(t) = e−t, β(ℓ) = 1
α + W

(
− ℓ

α · e
− ℓ

α

)
is

closely related to the Lambert W function (Corless et al., 1996).
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For any ℓ > 0 and K̃ : [−δ,∞)→ [0,∞) being continuously
differentiable, β(ℓ) is computed through a Newton-Raphson method
with the iterative formula as:

βm+1 ← βm +
βm

d

(
1− ℓd · K̃(βm · ℓ)− nα

ℓd · K̃(βmℓ)− d
∫ ℓ

0 td−1K̃(βmt) dt

)

for m = 0, 1, .... If in addition K̃ is convex, then limm→∞ βm = β(ℓ).

Proof (Sketch).
Consider F(β) =

∫ ℓ

0 td−1K̃(β · t) dt− α and solve for F(β) = 0 using

βm+1 ← βm −
F(βm)
d

dβ F(βm)
.

Use the integration by part for explicating d
dβ F(βm).

Computing β In Practice
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Recall that
∫ ℓ

0 td−1 · K̃ (β(ℓ) · t) dt = α.

• β : R+ → R is increasing due to the increasing property of K̃.

• β(ℓ) = 0 when ℓ = (d · α)
1
d .

• β has a horizontal asymptote: lim
ℓ→∞

β(ℓ) =
(

1
α

∫∞
0 td−1K̃(t) dt

) 1
d
.

• If, in addition, K̃ is continuously differentiable, so does β and it
satisfies the differential equation:(

ℓ− dα
ℓd−1 · K̃ (β(ℓ) · ℓ)

)
d
dℓ

β(ℓ) = −β(ℓ).

So, β generalizes the Lambert W function (Corless et al., 1996).

Other Properties for β
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Let ϵ = (d · α) 1
d . Recall that f̂RVDE(x) =

2π
d
2 ·K̃(β(ℓ(x))·||x−p||)

αn·Γ( d
2 )

.

Observation: f̂RVDE decreases radially with respect to p in the direction
of x if ℓ(x) > ϵ and increases otherwise.

The modes of f̂RVDE are classified as follows:

1 p ∈ D if ||p− q|| > 2ϵ for every Voronoi cell C(q) adjacent to C(p).

2
p+q

2 for p, q ∈ D if p+q
2 ∈ C(p) ∩ C(q) and ||p− q|| < 2ϵ.

3 all the points in the segment [p, q] for p, q ∈ D if p+q
2 ∈ C(p) ∩ C(q)

and ||p− q|| = 2ϵ.

Thus, α determines the extent by which points in D are “isolated” (i.e.,
modes) or otherwise get “merged” by placing a mode between them!

Mode Estimation for RVDE
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Gabriel graph (Gabriel and Sokal, 1969): A graph G = (V,E) satisfies
that (p, q) ∈ E when the closed ball having (p, q) as a diameter contains
no other points.

=⇒

The modes of f̂RVDE are
1 All isolated vertices in G;

2 Midpoints of edges in G;

3 Entire edges of length 2ϵ in G.

Fact: The number of cycles in G is |V| − |E|+ 1.

Heuristic Selection Rule for α: Select 2ϵ = 2(d · α) 1
d as |V|−1

|E| -percentile
for the lengths of edges in the Gabriel graph G = (V,E).

Modes of RVDE and Gabriel Graph I
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Figure 11: Illustration of the modes of RVDE (red) together with the Gabriel
graph (black).
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Experimental Results
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Evaluation Metrics: Average log-likelihood on a test set Ptest as:

1
|Ptest|

∑
x∈Ptest

log f̂ (x).

Datasets:
• Synthetic datasets: d = 10, |D| = 1000, and |Ptest| = 1000.

• Standard Gaussian;
• Dirichlet distribution with parameters αi =

1
d+1 ;

• Mixture of two Gaussians with means µ1 = −µ2 =
(
− 1

2 , 0, ..., 0
)

and
σ1 = 0.1, σ2 = 10.

• MNIST: Downscale the original resolution of 28× 28 gray scale
images to 10× 10 so that x ∈ [0, 1]10×10. Training set size: 30,000;
Test set size: 10,000.

• Anuran calls: 7195 calls from 10 species of frogs with x ∈ [0, 1]21. Test
set size: 10%.

Evaluation Metrics and Datasets
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• Exponential: K̃(t) = e−t with δ <∞.

• Rational: K̃(t) = 1
(t+1)k with k > d and δ < 1.

Figure 12: Comparisons between two kernels for RVDE. (The horizontal line
corresponds to the heuristic selection rule for α in each panel.)

Comparisons of Different Kernels in RVDE
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Figure 13: Comparisons of different estimators as the bandwidth

h = α
1
d /

(∫∞
0 K(t) dt

) 1
d varies. All the estimators implement the rational kernel.

Comparisons Between Density Estimators I
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(Empirical) Hellinger distance: 1
2|Ptest|

∑
x∈Ptest

[̂
f (x)

1
2 − ρ(x)

1
2

]2
.

Figure 14: Comparison of different estimators on a 30-dimensional Gaussian
mixture (left) and on a 10-dimensional Gaussian mixture with the Hellinger
distance as a metric (right).

Comparisons Between Density Estimators II
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Figure 15: Average running times (in seconds) per one full train-test run with
fixed bandwidths.

Figure 16: Standard deviations of the (test) log-likelihood over 5 experimental
runs. Each estimator is considered with its best bandwidth.

Comparisons Between Density Estimators III
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Conclusions and Future Directions
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We discuss two new extensions for the traditional Voronoi density
estimator (VDE) based on “kernel tricks” and rays from the generator p
in a Voronoi cell C(p).

1 Compactified Voronoi density estimator (CVDE):
• Monte Carlo method for computing the volume of V(p).
• Hit-and-run method for sampling from f̂CVDE.

2 Radial Voronoi density estimator (RVDE):
• Inherit the computational benefits from CVDE.
• f̂RVDE is continuous.

Future directions: Extend CVDE or RVDE to Riemannian manifolds,
such as directional data (Mardia et al., 2000), hyperbolic spaces (Nickel
and Kiela, 2017), etc.
• Define the rays through the exponential map of a given manifold.
• ...
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Thank you!
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Figure 17: Density Reconstructions of SDSS mock catalogue. Top left:
Millennium galaxy mock sample. Top right: DTFE reconstruction. Bottom left:
NNFE reconstruction. Bottom right: lognormal kriging reconstruction (Platen
et al., 2011).

VDE / Delaunay Tessellation Field Estimator
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Figure 18: Comparisons between cosmic filaments detected by the standard
SCMS, DisPerSE, and our proposed DirSCMS algorithms on the mock galaxy
sample of SDSS-IV in the redshift slice 0.05 ≤ z < 0.055 (Zhang et al., 2022).
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