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Cosmic Web is a large-scale network structure revealing that the matter in
our Universe is not uniformly distributed (Bond et al., 1996).
• Large scale: 1 Mpc ≈ 3.26 light-years.
• Cause: the anisotropic collapse of matter in gravitational instability

scenarios at the early stage of the Universe (Zel’Dovich, 1970).

Figure: Visualization of Cosmic Web (credited to the Millennium simulation
project (Springel et al., 2005)).

Motivations: Cosmic Web
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Cosmic web consists of four distinct components (Libeskind et al., 2018):

•Massive galaxy clusters (or nodes),

• Interconnected filaments,
•Two-dimensional tenuous sheets/walls,

}
on which matter concentrates.

around • Vast and near-empty voids.

Figure: Characteristics of Cosmic Web (credited to the Millennium simulation).
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We can reconstruct the underlying cosmic web structures based on
• the observed galaxies in some astronomical surveys (such as the

Sloan Digital Sky Survey; SDSS);
• (galactic) halos in some cosmological simulations (such as the

Millennium and Illustris simulations).

Specifically, the positions of observed galaxies (or simulated halos) are
recorded as

D = {(z1, α1, δ1), ..., (zn, αn, δn)} ,
where, for i = 1, ...,n,
• zi ∈ (0,∞) is the redshift value,
• αi ∈ [0, 360◦) is the right ascension (RA), i.e., celestial longitude,
• δi ∈ [−90◦, 90◦] is the declination (DEC), i.e., celestial latitude.

Candidate Data For Cosmic Web Detection
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The positions of observed galaxies (or simulated halos) are recorded as
D = {(z1, α1, δ1), ..., (zn, αn, δn)}, where, for i = 1, ...,n,
• zi ∈ (0,∞) is the redshift value,
• αi ∈ [0, 360◦) is the right ascension (RA), i.e., celestial longitude,
• δi ∈ [−90◦, 90◦] is the declination (DEC), i.e., celestial latitude.

Figure: Illustration of RA and DEC (Image Courtesy of Wikipedia).
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Objective: Detect cosmic web structures based on the distribution of
observed galaxies.

1 First on the 2D celestial sphere Ω2 (by slicing the universe).
2 Then generalize to the 3D (redshift) space.

Figure: Distribution of galaxies within a thin redshift slice.

▶ In particular, we focus on identifying the cosmic filaments.

General Cosmic Web Detection
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• They connect complexes of super-clusters (Lynden-Bell et al., 1988).

• They contain information about the global cosmology and the
nature of dark matter (Zhang et al., 2009; Tempel et al., 2014).

• The trajectory of cosmic microwave background light can be
distorted due to cosmic filaments, creating the weak lensing effect.

Figure: Illustration of the bending trajectory of CMB lights (credit to Siyu He,
Shadab Alam, Wei Chen, and Planck/ESA; see He et al. (2018) for details).

Motivation: Significance of Cosmic Filaments
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1 Brief introduction to our cosmic filament model and its statistical
estimation theory.

• Introduce the directional density ridge theory.

• Prove the statistical consistency in estimating the true density ridges
with directional kernel density estimator (KDE).

2 Presentation on computational perspectives of identifying cosmic
filaments via Directional (Subspace Constrained) Mean Shift algorithm.

• Formulate our DirSCMS algorithm as an example of the general
subspace constrained gradient ascent (SCGA) methods on (nonlinear)
manifolds.

• Establish the linear convergence properties of our SCGA algorithm.

3 Discussion on some future directions for our SCGA methods.

Highlights of the Today’s Talk
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Cosmic Filament Model: Directional
Density Ridges
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Given a (smooth) density function p on the Euclidean space RD (where
D = 2 for the 2D cosmic web detection problem), we consider its
gradient ∇p(x) ∈ RD and Hessian matrix ∇∇p(x) ∈ RD×D with spectral
decomposition

∇∇p(x) = V(x)Λ(x)V(x)T,

where
• V(x) = [v1(x), ...,vD(x)] ∈ RD×D is a real orthogonal matrix.
• Λ(x) = Diag [λ1(x), ..., λD(x)] ∈ RD×D is a diagonal matrix with
λ1(x) ≥ · · · ≥ λD(x).

The cosmic web can be characterized as the order-d density ridge
(Genovese et al., 2014; Chen et al., 2015):

Rd(p) =
{

x ∈ RD : Vd(x)T∇p(x) = 0, λd+1(x) < 0
}
,

where Vd(x) = [vd+1(x), ...,vD(x)] ∈ RD×(D−d) has its columns as the unit
eigenvectors of∇∇p(x) associated with the last D− d eigenvalues.

An Existing Statistical Model for Cosmic Filaments
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Figure: Density ridge (lifted onto the density function p; Chen et al. 2015)

The order-d density ridge of p in RD:

Rd(p) =
{

x ∈ RD : Vd(x)T∇p(x) = 0, λd+1(x) < 0
}
.

An Existing Statistical Model for Cosmic Filaments
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• When d = 0, Rd(p) reduces to the set of local modes of p as:

R0(p) =
{

x ∈ RD : ∇p(x) = 0, λ1(x) < 0
}
,

which marks the set of candidate galaxy clusters.

• When d = 1, Rd(p) characterizes the collection of one-dimensional
cosmic filaments.

• When d = 2, Rd(p) specifies the two-dimensional cosmic sheets/walls.

An Existing Statistical Model for Cosmic Filaments

Yikun Zhang Subspace Constrained Optimization on Manifolds 14/57



By controlling the redshift value, the locations of galaxies are recorded
as {(αi, δi)}n

i=1 on a (unit) sphere Ω2, where Ωq =
{

x ∈ Rq+1 : ||x||2 = 1
}

.

• The observed galaxies do not lie on a flat 2D plane but some
spherical shell, which have a nonlinear curvature!

Figure: BOSS/eBOSS Spectroscopic Footprint as of DR16 (credit to SDSS)

▶ Question: How do we generalize the density ridge model in order to
handle the nonlinear geometry?

Drawback of the Standard Density Ridge Model
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Setup: Suppose that we want to recover the true ring/filament structure
across the North and South pole of a unit sphere given some noisy data
points from it.

Figure: Noisy observations (red points) and the underlying true ring/filament
structure (blue line)

Why can’t we ignore the spherical geometry? (I)
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Methods:
• We encode those data points with their angular coordinates on a flat

rectangle plane
[
−π

2 ,
π
2

]
× [0, 2π), and recover the ring/filament

structure using the regular SCMS algorithm (Ozertem and
Erdogmus, 2011).

Or
• We consider those data points on the unit sphere

Ω2 =
{

x ∈ R3 : ||x||2 = 1
}

, and recover the ring/filament structure
using DirSCMS algorithm (Zhang and Chen, 2022).

We will discuss more on the directional subspace constrained mean shift
(DirSCMS) algorithm soon.

Why can’t we ignore the spherical geometry? (II)
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The background contour plots are kernel density estimators on the flat
plane

[
−π

2 ,
π
2

]
× [0, 2π) and unit sphere Ω2, respectively.

(a) Method 1: converged points after
the regular SCMS algorithm

(b) Method 2: converged points after
our DirSCMS algorithm

Why can’t we ignore the spherical geometry? (III)
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To define our density ridge model on Ωq or general manifolds, we need
some technical concepts from differential geometry.

Definition (Tangent space of Ωq)

The tangent space of the sphere Ωq at x ∈ Ωq is given by

Tx ≡ Tx(Ωq) ≃
{

v ∈ Rq+1 : xTv = 0
}
,

where V1 ≃ V2 signifies that the two vector spaces are isomorphic. In what
follows, v ∈ Tx indicates that v is a vector tangent to Ωq at x.

Background Knowledge in Differential Geometry
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Definition (Exponential Map)

An exponential map at x ∈ Ωq is a mapping Expx : Tx → Ωq such that the vector
v ∈ Tx is mapped to point y := Expx(v) ∈ Ωq with γ(0) = x, γ(1) = y and
γ′(0) = v, where γ : [0, 1]→ Ωq is a geodesic.

The inverse of an exponential map is known as the logarithmic map
Exp−1

x : U→ Tx for some neighborhood U ⊂ Ωq so that Exp−1
x (y) is a

tangent vector in Tx pointing to y ∈ Ωq with
∣∣∣∣Exp−1

x (y)
∣∣∣∣

2 being the
geodesic distance between x and y.

Background Knowledge in Differential Geometry
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Given a smooth function f : Ωq → R and a smooth curve γ : (−ϵ, ϵ)→ Ωq
with γ(0) = x and γ′(0) = v ∈ Tx, the differential of f at point x ∈ Ωq is a
linear map dfx : Tx → Tf (x)(R) ≃ R given by

dfx(v) =
d
dt

f (γ(t))
∣∣∣
t=0

= (f ◦ γ)′(0). (1)

Definition (Riemannian Gradient)
The Riemannian gradient grad f (x) ∈ Tx ⊂ Rq+1 is defined by

⟨grad f (x),v⟩x = dfx(v) (2)

for any v ∈ Tx and the predefined Riemannian metric ⟨·, ·, ⟩x.

Riemannian Gradient on Ωq
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Given that Ωq is a submanifold in Rq+1, we relate the Riemannian
gradient grad f (x) on Ωq with the total gradient∇f (x) in Rq+1 as:

grad f (x) =
(
Iq+1 − xxT)∇f (x), (3)

which is the projection of∇f (x) onto the tangent space Tx at x ∈ Ωq

(Absil et al., 2009). Here, Iq+1 is the identity matrix in R(q+1)×(q+1).

Tx

x

∇f(x)Rad (∇f(x))

Tang (∇f(x)) ≡ gradf(x)

Riemannian Gradient on Ωq
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Definition (Riemannian Hessian)
The Riemannian Hessian of f at x ∈ Ωq is a linear mapping
Hf (x) : Tx → Tx defined by

Hf (x)[v] = ∇̄vgrad f (x) (4)

for any v ∈ Tx, where ∇̄v is the Riemannian connection on Ωq.

1 It is self-adjoint with respect to the Riemannian metric as:

⟨Hf (x)[v],u⟩x = ⟨v,Hf (x)[u]⟩x.

2 It is related to the total gradient∇f (x) and total Hessian ∇∇f (x) as
(Zhang and Chen, 2021b):

Hf (x) = (Iq+1 − xxT)
[
∇∇f (x)−∇f (x)Tx · Iq+1

]
(Iq+1 − xxT).

3 Taylor’s expansion (Pennec, 2006):
(f ◦ Expx)(v) = f (x) + ⟨grad f (x),v⟩x +

1
2
⟨Hf (x)[v],v⟩x + O

(
||v||3

)
.

Riemannian Hessian on Ωq
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We perform the spectral decomposition (Horn and Johnson, 2012) on the
Riemannian HessianHf (x) as:

Hf (x) = V(x)




0
λ1(x)

. . .
λq(x)


V(x)T,

where V(x) =
(
x,v1(x), ...,vq(x)

)
∈ R(q+1)×(q+1) has its columns as the

unit eigenvectors ofHf (x).
• Eigenvectors v1(x), ...,vq(x) lie within the tangent space Tx.
• Descending eigenvalues: λ1(x) ≥ · · · ≥ λq(x).
• Hf (x) has an eigenvector x normal to Tx and with eigenvalue 0.

Order-d density ridge on Ωq (or directional density ridge) of f is defined as:

Rd ≡ Ridge(f ) =
{

x ∈ Ωq : Vd(x)Vd(x)Tgrad f (x) = 0, λd+1(x) < 0
}
,

where Vd(x) =
[
vd+1(x), ...,vq(x)

]
∈ R(q+1)×(q−d).

Directional Density Ridges on Ωq
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When d = 1, the directional density ridgeR1 becomes the set of local
modesM of f on Ωq as:

M≡Mode(f ) =
{

x ∈ Ωq : grad f (x) = 0, λ1(x) < 0
}
.
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• When f is the underlying galaxy density function,M points to
some good candidates of galaxy clusters.

Local Modes of f on Ωq
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How do we estimate the directional density ridgeRd on Ωq from
directional data {(α1, δ1), ..., (αn, δn)} → {X1, ...,Xn} ⊂ Ωq?

We first estimate the density function f on Ωq via the directional KDE
(Hall et al., 1987; Bai et al., 1988; García-Portugués, 2013) as:

f̂h(x) =
CL,q(h)

n

n∑

i=1

L
(

1− xTXi

h2

)
,

• L : [0,∞)→ [0,∞) is a directional kernel, i.e., a rapidly decaying
nonnegative function (e.g., von Mises kernel L(r) = e−r).

• h > 0 is the bandwidth parameter, and CL,q(h) is a normalizing term.

(a) fvMF,2(x;µ, ν) with µ = (0, 0, 1) and
ν = 4.0.

(b) 2
5 · fvMF,2(x;µ1, 5) + 3

5 · fvMF,2(x;µ2, 5)
with µ1 = (0, 0, 1),µ2 = (1, 0, 0).

Directional Density Estimation
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The directional KDE f̂h is useful because its plug-in estimators

M̂ =
{

x ∈ Ωq : grad f̂h(x) = 0, λ̂1(x) < 0
}

and
R̂d =

{
x ∈ Ωq : V̂d(x)V̂d(x)Tgrad f̂h(x) = 0, λ̂d+1(x) < 0

}

approachM andRd in a statistically consistent way (Theorem 6 in
Zhang and Chen 2021b and Theorem 4.1 in Zhang and Chen 2022):

• Haus
(
M,M̂

)
= O(h2) + OP

(√
1

nhq+2

)
, as h→ 0 and nhq+2 →∞,

• Haus
(
Rd, R̂d

)
= O(h2) + OP

(√
| log h|
nhq+4

)
, as h→ 0 and nhq+6

| log h| →∞,

where Haus(A,B) = max

{
r > 0 : sup

x∈A
d(x,B), sup

y∈B
d(y,A)

}
.

Statistical Consistency of Directional Density Ridge Estimation
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▶ Question: How do we identify the sets of directional local modes M̂
and ridge R̂d in practice?

1 (Mode-Seeking) We develop the directional mean shift procedure
to estimate M̂ as (Section 3 in Zhang and Chen 2021b):

x̂(t+1) = −

n∑
i=1

XiL′
(

1−XT
i x̂(t)

h2

)

∣∣∣∣
∣∣∣∣

n∑
i=1

XiL′
(

1−XT
i x̂(t)

h2

)∣∣∣∣
∣∣∣∣
2

=
∇f̂h(x̂(t))∣∣∣
∣∣∣∇f̂h(x̂(t))

∣∣∣
∣∣∣
2

for t = 0, 1, ....

2 (Ridge-Finding) We also generalize it to the directional subspace
constrained mean shift (SCMS) algorithm as (Section 4.2 in Zhang
and Chen 2022):

x̂(t+1) ← x̂(t) + V̂d(x̂
(t))V̂d(x̂

(t))T · ∇f̂h(x̂(t))∣∣∣∣∣∣∇f̂h(x̂(t))
∣∣∣∣∣∣

2

and x̂(t+1) ← x̂(t+1)

||x̂(t+1)||2
,

for t = 0, 1, ....
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We simulate 1000 data points from the following density

f3(x) = 0.3 · fvMF(x;µ1, ν1) + 0.3 · fvMF(x;µ2, ν2) + 0.4 · fvMF(x;µ3, ν3)

with µ1 = [−120◦,−45◦], µ2 = [0◦, 60◦], µ3 = [150◦, 0◦], and ν1 = ν2 = 8, ν3 = 5.
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(a) Step 0 (b) Step 0
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Step 1 (Slicing the Universe): Partition the redshift range into 325
spherical slices based on the comoving distance ∆L = 20 Mpc.
• Within each slice, we consider the redshifts of galaxies to be the

same so that the galaxies are located on Ω2.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 2 (Density Estimation): Estimate the galaxy density field within
each spherical slice by directional KDE.
• The bandwidth parameter is selected via a data-adaptive approach.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 3 (Denoising): Remove the observations with low-density values.
• We keep at least 80% of the original galaxy data in the slice.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 4 (Laying Down the Mesh Points): We place a set of dense mesh
points on the interested region, which are the initial points of our
DirSCMS iterations.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 5 (Thresholding the Mesh Points): We discard those mesh points
with low-density values and keep 85% of the original mesh points.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure: DirSCMS Iterations (Step 0).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure: DirSCMS Iterations (Step 2).

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data

Yikun Zhang Subspace Constrained Optimization on Manifolds 35/57



Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure: DirSCMS Iterations (Step 3).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure: DirSCMS Iterations (Step 5).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure: DirSCMS Iterations (Step 8).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure: DirSCMS Iterations (Final).
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Step 7 (Mode and Knot Estimation): We seek out the local modes and
knots on the filaments as cosmic nodes.

Figure: Nodes on the detected filaments.

Constructing a Cosmic Web Catalog on SDSS-IV Galaxy Data
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All of our proposed methods are encapsulated in a Python package
called SCONCE-SCMS (Spherical and CONic Cosmic wEb finder with
the extended SCMS algorithms; Zhang et al. 2022).

• Python Package Index: https://pypi.org/project/sconce-scms/.
• Documentation: https://sconce-scms.readthedocs.io/en/latest/.

Python Implementation: SCONCE-SCMS

Yikun Zhang Subspace Constrained Optimization on Manifolds 37/57
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• The final catalog is available at https://doi.org/10.5281/zenodo.6244866.

Advertisement: We use this cosmic web catalog to study the relation
between stellar masses of galaxies and their distances to filaments
despite some missingness in stellar masses (next Wednesday 5-6pm).

Final Cosmic Web Catalog on SDSS-IV Data
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Optimization Theory on Manifolds
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We prove the (local/global) convergence of our directional mean shift
and DirSCMS algorithms under some mild regularity conditions (Zhang
and Chen, 2021b,a, 2022).
▶ Question: how fast will our proposed algorithms converge?

Definition (Linear Convergence)

A sequence {yk}k=0,1,.. is said to converge linearly to y∗ if there exists a
positive constant Υ < 1 (rate of convergence) such that
||yk+1 − y∗|| ≤ Υ||yk − y∗||when k is sufficiently large (Boyd et al., 2004).

Convergence Results of the Proposed Methods
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Given a function f : M→ R defined on a (smooth) manifold M, we
consider an unconstrained optimization problem on M as:

max
x∈M

f (x).

1 Stiefel manifold: St(D1,D2) =
{

X ∈ RD1×D2 : XTX = ID2

}
(e.g., Ωq).

2 Gasserman manifold: {linear subspaces of dimension d in RD}.

3 The fitted manifold from the data (Izenman, 2012).

A three-dimensional embedding of
the main sample of galaxy spectra
from SDSS (approximately 675,000
spectra observed in 3750
dimensions; McQueen et al. 2016).
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Given a function f : M→ R defined on a (smooth) manifold M, we
consider an unconstrained optimization problem on M as:

max
x∈M

f (x).

Applications of optimization on manifolds include
• low-rank matrix completion and tensor factorization

(Vandereycken, 2013; Mishra et al., 2013).

• dictionary learning (Harandi et al., 2012).

• Fréchet mean or geometric median on manifolds (Lin et al., 2020).

• accelerating the parameter estimation for Gaussian mixture models
(Hosseini and Sra, 2015).
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To solve the optimization problem on a manifold, maxx∈M f (x), under a
smooth function f : M→ R, we consider generalizing the gradient
ascent method from RD to M.

• Gradient Ascent Algorithm on M:

x(t+1) = Expx(t)

(
η · grad f (x(t))

)
,

where η > 0 is the step size and Expx : Tx →M is the exponential
map at x of a (Riemannian) manifold M.

First-Order Methods on Manifolds
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Establishing the linear convergence of gradient ascent methods on
manifolds is challenging!

• The law of cosines in Euclidean space

a2 = b2 + c2 − 2bc cos(A)

is no longer valid on nonlinear manifolds.

Lemma (Lemma 5 in Zhang and Sra 2016)

If a, b, c are the sides (i.e., side lengths) of a geodesic triangle in an Alexandrov
space with sectional curvature lower bounded by κ, and A is the angle between
sides b and c, then

a2 ≤
√
|κ|c

tanh(
√
|κ|c)

b2 + c2 − 2bc cos(A).

Linear Convergence of First-Order Methods on Manifolds
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Under some regularity conditions, we prove the followings (Theorem 12
in Zhang and Chen 2021b):

1 Linear convergence of gradient ascent with f : There exists a small radius
r0 > 0 such that when the step size η > 0 is sufficiently small and the initial
point x(0) ∈

{
z ∈ M : ||z−mk||2 < r0

}
for some mk ∈M,

d(x(t),mk) ≤ Υt · d(x(0),mk) with Υ =

√
1− ηλ∗

2
,

where d(p, q) =
∣∣∣∣∣∣Exp−1

p (q)
∣∣∣∣∣∣

2
.

2 Linear convergence of gradient ascent with f̂h: let the gradient ascent
update on M be

x̂(t+1) = Expx̂(t)

(
η · grad f̂h(x̂

(t))
)
.

When the step size η > 0 is sufficiently small and the initial point
x̂(0) ∈

{
z ∈ M : ||z−mk||2 < r0

}
for some mk ∈M,

d
(

x̂(t),mk

)
≤ Υt · d

(
x̂(0),mk

)
+ O(h2) + OP

(√
| log h|
nhq+2

)
with probability tending to 1, as h→ 0 and nhq+2

| log h| →∞.

Linear Convergence of Gradient Ascent Method on M

Yikun Zhang Subspace Constrained Optimization on Manifolds 45/57



Under some regularity conditions, we prove the followings (Theorem 12
in Zhang and Chen 2021b):

1 Linear convergence of gradient ascent with f : There exists a small radius
r0 > 0 such that when the step size η > 0 is sufficiently small and the initial
point x(0) ∈

{
z ∈ M : ||z−mk||2 < r0

}
for some mk ∈M,

d(x(t),mk) ≤ Υt · d(x(0),mk) with Υ =

√
1− ηλ∗

2
,

where d(p, q) =
∣∣∣∣∣∣Exp−1

p (q)
∣∣∣∣∣∣

2
.

2 Linear convergence of gradient ascent with f̂h: let the gradient ascent
update on M be

x̂(t+1) = Expx̂(t)

(
η · grad f̂h(x̂

(t))
)
.

When the step size η > 0 is sufficiently small and the initial point
x̂(0) ∈

{
z ∈ M : ||z−mk||2 < r0

}
for some mk ∈M,

d
(

x̂(t),mk

)
≤ Υt · d

(
x̂(0),mk

)
+ O(h2) + OP

(√
| log h|
nhq+2

)
with probability tending to 1, as h→ 0 and nhq+2

| log h| →∞.
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▶ Question: Why is the linear convergence of gradient ascent methods
on M only valid around a small neighborhood of mk ∈M?

•Geodesically Strong Concavity. A differentiable function f : M→ R is
said to be geodesically concave if for any x,y ∈M, it holds that

f (y)− f (x) ≤
〈
grad f (x),Exp−1

x (y)
〉
.

A function f : M→ R is said to be geodesically µg-strongly concave if for
any x,y ∈M, it holds that

f (y) ≤ f (x) +
〈
grad f (x),Exp−1

x (y)
〉
− µg

2
· dg(x,y)2.

• Compact manifolds, such as spheres, do not admit globally
geodesically convex functions other than the constant function
(Yau, 1974).
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1 The directional mean shift algorithms can be viewed as a variant of
the gradient ascent methods on Ωq but with adaptive step sizes.

x̂(t+1) =
∇f̂h(x̂(t))∣∣∣
∣∣∣∇f̂h(x̂(t))

∣∣∣
∣∣∣
2

= Expx̂(t)

[
ηt · grad f̂h(x̂(t))

]
for t = 0, 1, ...,

where ηt =
θ̂t

||∇f̂h (̂x(t))||2 sin(θ̂t)
with θ̂t being the angle between x̂(t) and

∇f̂h(x̂(t)).

m̂

∇f̂h(m̂)

x̂(t)

x̂(t+1)

{
z ∈ Ωq : zT m̂ > 1− r2

2

}
∇f̂h(x̂(t))

Linear Convergence of the Directional Mean Shift Algorithm
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2 The step size

ηt =
θ̂t∣∣∣

∣∣∣∇f̂h(x̂(t))
∣∣∣
∣∣∣
2
sin
(
θ̂t

)

can be made sufficiently small when the bandwidth h is small and
the sample size n is large, but is also universally bounded away
from 0 with respect to the iteration number t.

3 Therefore, the linear convergence of directional mean shift
algorithm follow from the previous results for gradient ascent
methods on M.

The same arguments apply to the linear convergence of (directional)
subspace constrained mean shift algorithms (Zhang and Chen, 2022).

Linear Convergence of the Directional Mean Shift Algorithm
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To establish the linear convergence of subspace constrained gradient
ascent methods (on M), we intend to generalize the (geodesically) strong
concavity to its subspace constrained version.

• Subspace constrained gradient ascent (SCGA) algorithm in RD:

x(t+1) = x(t) + η · Vd(x(t))Vd(x(t))T∇f (x(t)).

• Subspace constrained gradient ascent (SCGA) algorithm on M:

x(t+1) = Expx(t)

[
η · Vd(x(t))Vd(x(t))Tgrad f (x(t))

]
.

Subspace constrained strong concavity (SCSC):

f (x)− f (y) ≤ ∇f (y)TVd(y)Vd(y)T(x− y)− µ

2
||x− y||22

for any x,y ∈ domain(f ) and some constant µ > 0.

Generalization to SCGA Algorithms (on M)
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• (A1) (Eigengap) There exist constants ρ > 0 and β0 > 0 such that
λd+1(y) ≤ −β0 and λd(y)− λd+1(y) ≥ β0 for any y ∈ Rd ⊕ ρ.

• (A2) (Path Smoothness) There exists a constant β1 ∈ (0, β0) such that

D
3
2

∣∣∣∣∣∣U⊥
d (y)∇f (y)

∣∣∣∣∣∣
2

∣∣∣∣∣∣∇3f (y)
∣∣∣∣∣∣

max
≤ β2

0

2
,

d ·D
3
2 ||∇f (x)||2

∣∣∣∣∣∣∇3f (x)
∣∣∣∣∣∣

max
≤ β0(β0 − β1)

for all y ∈ Rd ⊕ ρ and x ∈ Rd, where U⊥
d (y) = ID − Vd(y)Vd(y)T.

• (A3) (Quadratic Behaviors of Residual Vectors) There exists a constant
β2 > 0 such that the SCGA sequence

{
x(t)
}∞

t=0 with step size

0 < η ≤ min
{

4
β0
, 1

D||f ||(2)
∞

}
and x∗ ∈ Rd as its limiting point satisfies

∇f (x(t))TU⊥
d (x(t))(x∗ − x(t)) ≤ β0

4

∣∣∣∣∣∣x∗ − x(t)
∣∣∣∣∣∣2

2
,∣∣∣∣∣∣U⊥

d (x(t))(x∗ − x(t))
∣∣∣∣∣∣

2
≤ β2

∣∣∣∣∣∣x∗ − x(t)
∣∣∣∣∣∣2

2
.

Regularity Conditions for SCSC
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Under some regularity conditions, we prove the following (Theorem 4.6
in Zhang and Chen 2022):

1 R-Linear convergence of d(x(k),Rd) with f . When the step size
η > 0 is sufficiently small and the initial point x(0) lies within a
small neighborhood of its limiting point x∗ inRd,

d
(

x(k),Rd

)
≤ Υk · d

(
x(0), x∗

)
with Υ =

√
1− Υβ0

4
,

where β0 > 0 is the eigengap between the d-th and (d + 1)-th
eigenvalues ofHf (x).

2 R-Linear convergence of d(x̂(k),Rd) with f̂h. When the step size
η > 0 is sufficiently small and the initial point x̂(0) lies within a
small neighborhood of x∗ inRd,

d
(

x(k),Rd

)
≤ Υk · d

(
x(0), x∗

)
+ O(h2) + OP

(√
| log h|
nhq+4

)

with probability tending to 1, as h→ 0 and nhq+4

| log h| → 0.

Linear Convergence of Subspace Constrained Gradient Ascent on Ωq
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Figure: Density ridges estimated by the Euclidean SCMS algorithm on a
simulated dataset and its (linear) convergence plot.

Experiments of the Euclidean SCMS Algorithm
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Figure: Density ridges estimated by the directional SCMS algorithm performed
on a simulated dataset and its (linear) convergence plots.

Experiments of the Directional SCMS Algorithm
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Future Research Directions
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1 The current linear convergence theory of the SCGA method on RD

or general manifolds requires some regularity condition on the
iterative sequence

{
x(t)
}∞

t=0; recall Assumption (A3).

• It is worth thinking about the conditions on f under which the SCGA
algorithm (on manifolds) can converge linearly.

Figure: Different conditions in optimization theory (Karimi et al., 2016).

Future Works on SCGA Algorithms on Manifolds
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2 Can the stochastic gradient ascent methods bring some benefits
towards the above iteration?

3 More broadly, the subspace projection matrix Vd(x)Vd(x)T does not
need to come from the Hessian of f .

• An interesting application of the above problem is the coordinate
descent algorithm on manifolds (Gutman and Ho-Nguyen, 2023; Peng
and Vidal, 2023).

Future Works on SCGA Algorithms on Manifolds
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Thank you!
More details can be found in
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There are some potential drawbacks of detecting filaments with survey
data in the 3D space:
• The determination of d(·) relies on complex cosmological models.
• The galaxy distribution is distorted along the line of sight due to the

peculiar velocities of galaxies (i.e., the so-called finger-of-god
(Sargent and Turner, 1977) and Kaiser (Kaiser, 1987) effects).

Figure: Redshift distortions along the line of sight (Kuchner et al., 2021).

• The number of galaxies varies across different redshift values, so
applying 3D approaches will be computationally intensive.

Drawback of 3D Cosmic Web Detection Methods
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We partition the redshift range of observed galaxies into several
non-overlapping thin slices.

Figure: Illustration of slicing the Universe (credit to Laigle et al. 2018)

This tomographic approach has its own advantages over 3D methods:
• It controls the redshift distortions along the line-of-sight direction.
• The measurement error in one slice won’t propagate to other slices.
• It helps reduce computational cost...

2D Method for Detecting filaments
Slicing the Universe (Tomographic Analysis)
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1 We slice the Universe via a cosmological model, such as Planck15
(Ade et al., 2016) or WMAP9 (Hinshaw et al., 2013) ΛCDM
cosmology, but not in the original redshift space.
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Caveats in Slicing the Universe (I)
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Under some regularity conditions (Hall et al., 1987; Bai et al., 1988;
García-Portugués, 2013; Zhang and Chen, 2021b), we have
• Pointwise Consistency: for any fixed x ∈ Ωq,

f̂h(x)− f (x) = O(h2) + OP

(√
1

nhq

)

as h→ 0 and nhq →∞;

grad f̂h(x)− grad f (x) = O(h2) + OP

(√
1

nhq+2

)

as h→ 0 and nhq+2 →∞;

H f̂h(x)−H f (x) = O(h2) + OP

(√
1

nhq+4

)

as h→ 0 and nhq+4 →∞.

Pointwise Consistency of Directional KDE and its Derivatives
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• Uniform Consistency:

∥f̂h − f∥∞ = O(h2) + OP

(√
log n
nhq

)

as h→ 0 and nhq

log n →∞;

sup
x∈Ωq

∣∣∣
∣∣∣grad f̂h(x)− grad f (x)

∣∣∣
∣∣∣
max

= O(h2) + OP

(√
log n
nhq+2

)

as h→ 0 and nhq+2

log n →∞;

sup
x∈Ωq

∣∣∣
∣∣∣H f̂h(x)−H f (x)

∣∣∣
∣∣∣
max

= O(h2) + OP

(√
log n
nhq+4

)

as h→ 0 and nhq+4

log n →∞, where ∥g∥∞ = supx∈Ωq
|g(x)| and ||A||max is

the elementwise maximum norm for a matrix A ∈ R(q+1)×(q+1).

Uniform Consistency of Directional KDE and its Derivatives
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Input:
• A directional data sample X1, ...,Xn ∼ f (x) on Ωq

• The order d of the directional ridge, smoothing bandwidth h > 0,
and tolerance level ϵ > 0.

• A suitable meshMD ⊂ Ωq of initial points.

Step 1: Compute the directional KDE f̂h(x) =
cL,q(h)

n

n∑
i=1

L
(

1−xTXi
h2

)
on the

meshMD.

Step 2: For each x̂(0) ∈MD, iterate the following DirSCMS update until
convergence:

while
∣∣∣∣
∣∣∣∣

n∑
i=1

V̂d(x̂(0))V̂d(x̂(0))TXi · L′
(

1−XT
i x̂(0)

h2

)∣∣∣∣
∣∣∣∣
2

> ϵ do:
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• Step 2-1: Compute the scaled version of the estimated Hessian
matrix as:

nh2

cL,q(h)
Hf̂h(x̂(t)) =

[
Iq+1 − x̂(t)

(
x̂(t)
)T
][

1
h2

n∑

i=1

XiXT
i · L′′

(
1− XT

i x̂(t)

h2

)

+

n∑

i=1

XT
i x̂(t)Iq+1 · L′

(
1− XT

i x̂(t)

h2

)][
Iq+1 − x̂(t)

(
x̂(t)
)T
]
.

• Step 2-2: Perform the spectral decomposition on nh2

cL,q(h)Hf̂h
(
x̂(t)
)

and

compute V̂d(x̂(t)) =
[
vd+1(x̂(t)), ...,vq(x̂(t))

]
, whose columns are

orthonormal eigenvectors corresponding to the smallest q− d
eigenvalues inside the tangent space Tx̂(t) .
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• Step 2-3: Update

x̂(t+1) ← x̂(t) − V̂d(x̂(t))V̂d(x̂(t))T



∑n

i=1 XiL′
(

1−XT
i x̂(t)

h2

)

∑n
i=1 XiL′

(
1−XT

i x̂(t)

h2

)


 .

• Step 2-4: Standardize x̂(t+1) as x̂(t+1) ← x̂(t+1)

||̂x(t+1)||2
.

Output: An estimated directional d-ridge R̂d represented by the
collection of resulting points.
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