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Mean shift algorithm: Euclidian space





Properties of mean shift

I mainly focus on application to clustering here



This paper: Assume known manifold

• The setting here is not Euclidian space, but a Riemannian manifold 
with a metric g.

• Briefly, the metric defines the inner products between tangent 
vectors which lie in the same tangent spaces.

• In many cases, we may need to specify which metric a manifold has.

• The choice of metric changes what the shortest distances between 
points are



What does knowing the (Riemannian) 
manifold give us?

• Tangent spaces

• Exponential map

• Logarithmic map

• Geodesic curves

• Geodesic distances

• Metric on tangent spaces



Geometric Preliminaries

• Tangent spaces: Each point defines a vector space

• Metric: For  we have an inner product

• Distance: The metric    allows us to define distances of curves  

• Geodesic distance: We can then define the shortest distance between 
two points x and y on the manifold, denoted 

• Exponential map: maps tangent vectors to the 
point on manifold which is the endpoint of the unique geodesic 
starting at    with initial velocity   : 

• Logarithmic map: is the inverse of exp at x



Nonlinear Mean shift

• Important note: the KDE is only defined for points on the manifold



Theorem just used



Nonlinear mean shift algorithm



Nonlinear mean shift algorithm



Proven properties of nonlinear mean shift

The authors state that the proof that 
this algorithm is equivalent to the EM 
algorithm is essentially the same as the 
one in Carreira-Perpinan (2007) (for Lie 
groups).



Background of development of nonlinear 
mean shift
• Mean shift originally developed by Fukunaga, K., & Hostetler, L. D. (1975)

• Popularized by Comaniciu and Meer (2002)

• A mean shift algorithm for Lie groups was developed by Tuzel, Subbarao, and 
Meer (2005)

• Nonlinear Mean Shift for Clustering over Analytic Manifolds by Subbarao and 
Meer (2006) introduced the algorithm presented here, which generalized the Lie 
group version

The main contribution of this paper is to derive theoretical properties, as well as to 
apply it to Motion Segmentation and Discontinuity Preserving Filtering. They also 
provide the numerical details for several specific manifolds.

Will refer to the algorithm presented here as RMS (Riemannian mean shift).



Work which followed
• Intrinsic Mean Shift for Clustering on Stiefel and Grassmann Manifolds by 

Cetingul and Vidal (2009) refer to the mean shift algorithm developed here 
as the extrinsic mean shift algorithm, and develop an “intrinsic” one which 
avoids the computing the exponential map at every iteration, but only on 
the Stiegel and Grassmann manifolds

• In Clustering via Mode Seeking by Direct Estimation of the Gradient of a 
Log-Density by Sasaki et al. (2014), the idea is that just because you have a 
good density estimate does not mean that you have a good estimate of the 
gradient. They model the gradient directly. (Euclidian mean shift)

• In Least-Squares Log-Density Gradient Clustering for Riemannian Manifolds 
by Ashizawa et al. (2017), the approach of Sasaki et al. (2014) is adapted 
the Riemannian manifold setting and is shown empirically to have better 
performance than the RMS. No theoretical analysis performed



Work which followed cont.

• In Mode estimation on matrix manifolds: Convergence and 
robustness by Sasaki et al. (2022), they follow the approach of 
Ashizawa et al. (2017) but avoid needing to compute the exponential 
and logarithmic maps at every iteration, only on 4 matrix manifolds 
(Stiefel, oblique, Grassmann manifolds and the set of symmetric 
positive definite matrices). (Euclidian metric)

• Yikun and Yen-chi has 4 papers where the setting is the directional 
mean shift! (the manifold is the hyper-sphere)



Thanks for listening!


