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Mean shift algorithm: Euclidian space

Let x; € RYi=1,....nben independent, i1dentically
distributed points generated by an unknown probability dis-
tribution f. The kernel density estimate
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based on a profile function k satistying k(z) = 0 for z = 0,
1S a nonparametric estimator of the density f(y) at y. The
constant ¢ p 18 chosen to ensure that f; integrates to one.




Define g(-) = —k’(-). Taking the gradient of (24) we get
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where, C 1s a positive constant and my, (X) 1s the mean shift
vector. The expression (25) shows that the mean shift vec-
tor 1s proportional to a normalized density gradient estimate.

The it_era_tic:m
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1s a gradient ascent technique converging to a stationary
point of the density. Saddle points can be detected and re-
moved, to obtain only the modes.



Properties of mean shift

Theorem 1. If the kernel K has a convex and monotonically

decreasing profile, the sequences {yj};_u and

{Frr(9) )} i1, cOnverge and {frx (1)} jo10.. 18 monotoni-
cally increasing.

Finally, in Carreira-Perpinan (2007), it was shown that
for Gaussian kernels, the mean shift step 1s the same
as Expectation-Maximization. In the M-step of the EM-
algorithm a tight lower bound on the function 1s computed
and 1n the E-step this bound 1s maximized. For non-Gaussian
kernels, mean shift 1s equivalent to generalized EM.

| mainly focus on application to clustering here



This paper: Assume known manifold

* The setting here is not Euclidian space, but a Riemannian manifold
with a metric g.

* Briefly, the metric defines the inner products between tangent
vectors which lie in the same tangent spaces.

* In many cases, we may need to specify which metric a manifold has.

* The choice of metric changes what the shortest distances between
points are



What does knowing the (Riemannian)
manifold give us?

* Tangent spaces
* Exponential map

* Logarithmic map
e Geodesic curves
e Geodesic distances

* Metric on ta ngent spaces Fig. 2 Example of a two-dimensional manifold and the tangent space
at the point x



Geometric Preliminaries

* Tangent spaces: Each point x € M defines a vector space T, M
 Metric: For v, w € T, M we have an inner product g(v,w) € R
* Distance: The metric g allows us to define distances of curves ¢ :(0,1)— M

e Geodesic distance: We can then define the shortest distance between
two points x and y on the manifold, denoted d(z, y)

e Exponential map: exp,(v) : T, M — M maps tangent vectors to the
point on manifold which is the endpoint of the unique geodesic Y
starting at = with initial velocity v: exp,(v) = (1)

* Logarithmic map: log.(y) : M — T, Mis the inverse of exp at x



Nonlinear Mean shift

Consider a Riemannian manifold with a metric d. Given n
points on the manifold, x;,7 = 1, ..., n, the kernel density

estimate with profile k£ and bandwidth 18, . ating the gradient of f; at y, we get
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where, g(-) = —k’(-), and in the final step we use (10).

* Important note: the KDE is only defined for points on the manifold



Theorem just used

Theorem 1 The gradient of the Riemann squared distance
is given by

Vf(x)=Vxd*(x,y) = —2logg(y). (10)



Nonlinear mean shift algorithm
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Nonlinear mean shift algorithm

MEAN SHIFT OVER RIEMANNIAN MANIFOLDS

Given: Points on a manifold x;,1 =1,...,n

fori—1...n
Y — X
repeat

T

Z qg (r_fg (v, x.i)/h?) logy (x;)

my,(y)
z.g (dg(y, xi-)/h,g)

i=1
y «— expy (my(y))

until |[my,(y)| < e

Retain y as a local mode

Report distinct local modes.



Proven properties of nonlinear mean shift

Theorem 2 If the kernel K has a convex and monotoni-
cally decreasing profile and the bandwidth h is less than
the injectivity radius i(M) of the manifold, the sequence
{f(yj)]j:u‘__ is convergent and monotonically non-
decreasing.

The authors state that the proof that
this algorithm is equivalent to the EM
algorithm is essentially the same as the
one in Carreira-Perpinan (2007) (for Lie

groups).



Background of development of nonlinear

mean shift
* Mean shift originally developed by Fukunaga, K., & Hostetler, L. D. (1975)

e Popularized by Comaniciu and Meer (2002)

* A mean shift algorithm for Lie groups was developed by Tuzel, Subbarao, and
Meer (2005)

* Nonlinear Mean Shift for Clustering over Analytic Manifolds by Subbarao and
Meer (2006) introduced the algorithm presented here, which generalized the Lie
group version

The main contribution of this paper is to derive theoretical properties, as well as to
apply it to Motion Segmentation and Discontinuity Preserving Filtering. They also
provide the numerical details for several specific manifolds.

Will refer to the algorithm presented here as RMS (Riemannian mean shift).



Work which followed

* Intrinsic Mean Shift for Clustering on Stiefel and Grassmann Manifolds by
Cetingul and Vidal (2009) reter to the mean shitt algorithm developed here
as the extrinsic mean shift algorithm, and develop an “intrinsic” one which
avoids the computing the exponential map at every iteration, but only on
the Stiegel and Grassmann manifolds

* In Clustering via Mode Seeking by Direct Estimation of the Gradient of a
Log-Density by Sasaki et al. (2014), the idea Is that just because you have a
good density estimate does not mean that you have a good estimate of the
gradient. They model the gradient directly. (Euclidian mean shift)

* |n Least-Squares Log-Density Gradient Clustering for Riemannian Manifolds
by Ashizawa et al. (2017), the approach of Sasaki et al. (2014) is adapted
the Riemannian manifold setting and is shown empirically to have better
performance than the RMS. No theoretical analysis performed




Work which followed cont.

* In Mode estimation on matrix manifolds: Convergence and
robustness by Sasaki et al. (2022), they follow the approach of
Ashizawa et al. (2017) but avoid needing to compute the exponential
and logarithmic maps at every iteration, only on 4 matrix manifolds
(Stiefel, oblique, Grassmann manifolds and the set of symmetric
positive definite matrices). (Euclidian metric)

* Yikun and Yen-chi has 4 papers where the setting is the directional
mean shift! (the manifold is the hyper-sphere)



Thanks for listening!



