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Motivations and Problem Setup



Why Gaussian Process (GP)?

GP has been used as a powerful tool in Bayesian non-parametric
inference and serves as an alternative to NN for supervised and
semi-supervised learning.

In the Bayesian optimisation framework, GP is often employed as a
prior for a broad range of tasks in various fields, including:

• Spatial Statistics: Ecology, Climate science, Epidemiology;
• Dynamical System: Robotics, Reinforcement learning;
• Bayesian inverse problem: Medical imaging, Remote sensing,
Ground prospecting;

• · · ·
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Stationary Matérn GP in Euclidean domain

Definition (Informal definition of GP)
If f : X → R such that f ∼ GP(m, k), with mean function m and
Covariance function/kernel k, then for any subset x ∈ X n, the
random vector f = f(x) is multivariate Gaussian with mean
µ = m(x) and Gram matrix Kxx = k(x, x).

The kernel k must be positive semi-definite, in the sense that for any
x ∈ X n, Kxx is positive semi-definite.

As a side note,

• We will assume a zero mean GP, with m ≡ 0.
• We will generally focus on stationary kernels, for which we can
find a function ℓ : X → R s.t. k(x, x′) = ℓ(x− x′).

• We will use GP and Gaussian Field (GF) interchangeably in the
sequel (formal definition to come).
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Example: Matérn family of kernels

For x, x′ ∈ X = Rd, Matérn family of kernels admits the form

kν(x, x′) = σ2
21−ν

Γ(ν)

(√
2ν ∥x− x′∥

κ

)ν

Kν
(√

2ν ∥x− x′∥
κ

)
(1)

with parameters ν , σ2 and κ. Kν is the modified Bessel function of
the second kind.

A special example is squared exponential kernel (RBF kernel) given
by ν → ∞,

k∞(x, x′) = σ2 exp

(
−∥x− x′∥2

2κ2

)
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Extension to Manifold setting: A no-go attempt

On a m-dimensional compact Riemannian manifold (M,g) without
boundary, one may wish to replace the Euclidean norm in the kernel
with geodesic distance dg w.r.t. g onM.

This is generally not a well-defined kernel. For example,

Theorem (Feragen et al. Theorem 2)
For (M,g) defined above, if the geodesic squared exponential
kernel below is positive semi-definite ∀κ2 > 0, thenM is isometric
to an Euclidean space.

k(x, x′) = σ2 exp

(
−
dg(x, x′)2
2κ2

)

Since Euclidean space is not compact, k is not well-defined.
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SPDE approach to GP on Riemannian Manifold

An alternative would be finding the solution for some Elliptical SPDE
on (M,g). This has been a relatively well-studied approach in
Spatial statistics, with the following important characterisation of
Matérn given by Whittle [7], [8].

SPDE approach: Matérn GP
For X = Rd, a GP f(x) with covariance function (1) is the unique
solution to the SPDE,

(τ I−∆)
s
2 f(x) = W(x) (2)

where τ = 2ν
κ2 and s = ν + d

2 . W denotes the spatial Gaussian white
noise with unit variance. In addition, the marginal variance of f(x) is

σ2 =
Γ(s− d

2 )

(4π) d2 Γ(s)τ s− d
2
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Some theoretical advantages:

• Easily extendable to non-stationary kernels:
employ general Elliptic operators ∇ · (γ(x)∇) in place of Laplace
operator; and/or let τ = τ(x) dependant on spatial variation.

• Generalisation to compact Riemannian manifold is
straight-forward:
replace ∆ with Laplace-Beltrami operator ∆LB w.r.t. (M,g); and
defineW w.r.t. Riemannian volume measure.

• It allows elegant extensions to Spatial-Temporal domain :
consider Parabolic SPDE instead of Elliptical SPDE, for example
stochastic heat equation.

• The solution is amenable to approximation with point-cloud
data under manifold assumption [6]; and also compatible with
sparse GP techniques for scalable training [2].
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Gaussian Field and SPDE



Spectral property of Laplace-Beltrami Operator

Just as in ∆ defined on bounded domain G ⊂ Rd with boundary
conditions (usually Dirichlet), the Laplace-Beltrami operator defined
on compact manifold also allows a spectral representation.

Theorem (Sturm-Liouville decomposition)
Let (M,g) be a compact Riemannian manifold without boundary,
there exists an orthonormal basis {ϕi}i∈Z+ of L2(M) such that
−∆LBϕi = λiϕi with 0 = λ0 < λ1 ≤ · · · ≤ λi → 0 as i→ ∞. Moreover,
−∆LB admits the representation

−∆LBf =
∞∑
i=0

λi⟨f, ϕi⟩L2ϕi (3)

which converges unconditionally in L2(M).
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Why this relates to RKHS

Recall Mercer’s Theorem in the theory of RKHS,

Theorem (Mercer’s Theorem, S.Saitoh 2016[5])
Assume X is a locally compact Hausdorff space equipped with a
positive Borel measure μ. In addition, let L2µ(X ) be the separable
Hilbert space of real square-integrable functions defined on X .
Consider the Integral operator for bilinear form k ∈ L2µ(X × X ),

(Kf)(y) =
∫
X
f(x)k(x, y) dµ(x), K : L2(X ) → L2(X ), (4)

and assume k satisfies the following assumptions:

1. k(x, y) = k(y, x) ∀x, y ∈ supp(µ);
2.

∫ ∫
X×X k(x, y)f(x)f(y) dµ(y) ≥ 0, ∀f ∈ L2µ(X ).
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(Theorem continues…)
Then K admits a countable set of non-negative eigenvalues {ηi}∞i
and corresponding orthonormal eigenfunctions {ϕi}∞i , where
Kf =

∑
i ηi⟨f, ϕi⟩L2ϕi.

Convergence of the infinite sum is absolute and uniform on
supp(µ× µ).

In fact, K gives an isomorphism from L2(X ) to a RKHS with
reproducing kernel k, defined by

Hk =
{
f ∈ L2µ(X ) : f =

∞∑
i

aiϕi,
(
|ai|2
ηi

)
∈ ℓ2

}
,

with inner product of the form ⟨f,g⟩Hk =
∑∞

i
aibi
ηi
where

f =
∑∞

i aiϕi, g =
∑∞

i biϕi, and ai,bi = 0 for λi = 0.
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It’s then straight-forward to see that

Kf =
∞∑
i=0

ηi⟨f, ϕi⟩L2ϕi.

This has a similar form to (3) but not exactly.

Although −∆LB is positive and self-adjoint, it is however not
bounded. Its spectral decomposition is in fact given by its resolvent
−(I+∆LB)

−1, which is compact self-adjoint and positive definite1 and
therefore an Integral (Hilbert-Schmidt) operator in the form of (4).

The Borel function calculus subsequently gives the Sturm-Liouville
decomposition of −∆LB, where λi = 1/ηi + 1.

1https://gauss.math.yale.edu/~mrm89/lecture5.pdf#page3
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Gaussian Measure

Consider a measurable space (V,B(V)), where V is a linear
topological space and B(V) the Borel σ-algebra of V. Then,

Definition (Gaussian Measure on Topological space, Def 3.2.4 [4])
A probability measure µ is called Gaussian if for every linear
functional ℓ ∈ V′ such that ℓ : V→ R, the probability measure ℓ∗µ

on (R,B(R)) defined by

ℓ∗µ((a,b]) = µ{v ∈ V : ℓ(v) ∈ (a,b]}

is Gaussian. In addition, µ is called centered if ℓ∗µ is centered for
any ℓ ∈ V′.

The Covariance function for centered Gaussian measure µ is

Cµ(ℓ,h) = Eµ[ℓh] =
∫
V
ℓ(v)h(v) µ(dv), ℓ,g ∈ V′.
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In particular, for V = H a separable Hilbert space identified with its
dual, i.e. H = H′, the following holds

Theorem (Thm 3.2.5 [4])
1. If µ is a Gaussian measure on H, then its covariance operator is
nuclear.

2. Conversely, if K is a self-adjoint non-negative nuclear operator,
then there exists a Gaussian measure µ on H such that
Cµ = ⟨Kf,g⟩H for all f,g ∈ H.

Clearly, K is an Integral operator as in Mercer’s Theorem, and is
usually called the Covariance operator for µ.
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In the case of 2., consider the set of eigenfunctions {ϕk}k≥1 of K with
eigenvalues {λk}k≥1, then define a Gaussian measure µ as the
probability distribution of the random variable X, where

X =
∑
k≥1

√
λkξkϕk.

and {ξk}k is a set of i.i.d. standard Gaussian r.v. This is called the
Karhunen-Loève expansion of Gaussian random element X.
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Generalised Gaussian Field

Definition (Zero-mean generalised Gaussian field, Def 3.2.10 [4])
A zero mean generalised Gaussian field X over a Hilbert space H is
a collection of Gaussian random variables {X(f) : f ∈ H} with

1. EX(f) = 0 ∀f ∈ H
2. There exists a bounded, linear, self-adjoint, non-negative K on

H such that

Cµ(X(f),X(g)) = E[X(f)X(g)] = ⟨Kf,g⟩H

By the duality of H, for any ℓ ∈ H′, ∃!X ∈ H s.t. ℓ(v) = ⟨v, X⟩H∀v ∈ H2.
Intuitively, X is the functional ℓ, and X is the H-valued random
element with Gaussian measure µ. This is not generally true!

2This is due to the Riesz representation theorem.
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Regularity of Generalised GF

Definition (Regularity, Def 3.2.13 [4])
A generalised field X over Hilbert space H is regular if there exists
an H-valued random element X ∈ L2, i.e. E∥X∥2H < ∞ such that

X(f) = ⟨X, f⟩H ∀f ∈ H.

In particular, we have the following important characterisation of
generalised GF on seperable Hilbert space.

Theorem (Main characterisation, Thm 3.2.15 [4])
A generalised field X over a separable Hilbert space H is regular iff
K of X is nuclear.
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Upshot of the Main Characterisation

Fact
One can show for separable Hilbert space H with CONS {mk}k≥1,
{X(mk)}k≥1 is a collection of i.i.d. standard Gaussian r.v.

From the Theorem, if K is nuclear with eigenfunction {ϕk}k and
eigenvalues {λk}k, we may define i.i.d. standard Gaussian r.v. as

ξk =
1√
λk

X(ϕk)

so the H-valued Gaussian random element is defined by

X =
∑
k

⟨X, ϕk⟩Hϕk =
∑
k

X(ϕk)ϕk =
∑
k

√
λkξkϕk

Indeed, E∥X∥2H =
∑

k λk < ∞ when K is nuclear.
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In addition, for any f,g ∈ L2(M) = H,

E[X(f)X(g)] = E[⟨X, f⟩⟨X,g⟩]

=
∑
k

∑
j

fkgjE[⟨X, ϕk⟩⟨X, ϕj⟩]

=
∑
k

fkgk
∫ ∫

E[X(x)X(y)]ϕk(x)ϕk(y) dxdy

=
∑
k

fkgk⟨Kϕk, ϕk⟩

=
∑
k

λkfkgk = ⟨Kf,g⟩

where k(x, y) := E[X(x)X(y)] is the reproducing kernel, and K the
Covariance operator for Gaussian measure µ (of X).

Then X is in fact a Gaussian random element in RKHS Hk associated
to the kernel k.
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Gaussian White Noise

When K = Id, X is the Gaussian white noise on H. In this case, the
Gaussian field X is not regular.

If H = L2(M), we denote such X asW . Clearly,

E[W(f)W(g)] = ⟨f,g⟩, ∀f,g ∈ L2(M)
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Elliptical SPDE on Manifold

Definition (Solution to SPDE system, Def 4.2.1 [4])
Let H be a Hilbert space and L : H → L2(M) be a bounded linear
operator. Then the zero-mean generalised Gaussian random field X

over H is a solution to
LX = W (5)

if for every g ∈ L2(M)

X(L∗g) = W(g).

We will generally assume (5) is an Elliptical SPDE, where L is an
Elliptical operator (e.g. a function of ∆LB)
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Theorem (Thm 4.2.2 [4])
If L is invertible, then a zero-mean generalised Gaussian field X

over H defined by
X(h) = W((L−1)∗h)

is the unique solution to (5).

since we know the Integral operator forW is identity

E[X(f)X(g)] = E[W((L1κ)∗f)W((L−1κ )∗g)]
= ⟨(L−1κ )∗f, (L−1κ )∗g⟩L2(G)

= ⟨f, L−1κ (L−1κ )∗g⟩L2(G)

= ⟨f,Kg⟩L2(G)
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Matérn Gaussian Field

Going back to the example for Matèrn GF, where

(τ I−∆)
s
2 f(x) = W(x)

Then K = τ s−
m
2 (τ I−∆)−s, the reproducing kernel admits the

expansion (up to scaling of a constant)

k(x, y) = E[X(x)X(y)] = τ s−
m
2
∑
k≥1

(τ + λk)
− s

2ϕk(x)ϕk(y)

due to the Spectral property of Laplace operator and Borel
functional calculus. The GF is of the form

f(x) = τ
s
2−

m
4
∑
k

(τ + λk)
− s

2ϕk(x)ξk

and f ∼ GP(0, τ s−m
2 (τ I−∆)−s).
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Extension to non-stationary Gaussian Field

Consider the Elliptical operator ∇ · (γ(x)∇), the SPDE

(τ(x)I−∇ · (γ(x)∇))
s
2 f(x) = W(x)

gives a non-stationary second order structure for the Gaussian field.
The Karhunen-Loève expansion for f(x) is

f(x) = τ(x) s2−m
4 γ(x)m4

∑
k

(λk)
− s

2ϕk(x)ξk.

with marginal variance at each x ∈ M proportional to τ(x) s2−m
4 γ(x)m4 .

Then, f ∼ GP(0, [τ I−∇ · (γ∇)]−s)

In this case the eigenpairs {(λk, ϕk)}k is from τ I−∇ · (γ∇).
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Matérn GP on Riemannian
Manifold (Borovitskiy et al. 2020)



Implementation details

• For d dimensional torus, there are closed form of the
eigenfucntions and eigenvalues available, therefore the GF is
known;

• For d dimensional Hyper-sphere, need to work with spherical
harmonics directly. Low-rank approximation for the GF is
required with truncated Karhunen-Loève expansion (HLE). 3

• For general compact Riemannian manifold without boundary,
numerical solver (FEM) is employed to find approximations to
eigenpairs of ∆LB, with truncated HLE.
FEM is not generally applied to d > 3, due to the complication of
mesh construction in high dimensions.

3According to [3], there’s currently no stable spherical harmonic implementations
available for high dimensional data.
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Conclusion

[2] has not provided with a generally useful or applicable solution to
high dimensional problems in the general compact Riemannian
manifold setting.

What to look for next?
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Graph Representation of Matérn
GP (Sanz-Alonso & Yang 2020)



Contributions

• Introduced Gaussian Markov Random Field (GMRF)
approximation of stationary and non-stationary GF, based on
discrete SPDE (with graph Laplacian).

• Extension of GP on manifold to high-dimensional point-cloud
data and graph-structured data with manifold assumption.

• Established rates of convergence for graph-based GF to the
continuum counterpart in spectrum using tools from Optimal
Transport.
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Implementation details

• The graph Laplacian is constructed from point cloud data with
KNN-graph or ϵ-neighborhood graph, and normalised by the
probability density of the data estimated with KDE 4.

• The GMRF approximation comes from the sparse graph
Laplacian in the SPDE, which gives an extension to the ICAR
model from Besag5 [1].

4There is, however, curse of dimensionality with KDE.
5ICAR is also a graph-based GF model f ∼ N(0, (D−W)−1), with unormalised graph
Laplacian as its precision matrix.
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Thanks for Listening!
Any Questions?
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