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Cosmic Web is a large-scale network structure revealing that the matter in
our Universe is not uniformly distributed (Zel’Dovich, 1970; Shandarin
and Zeldovich, 1989; Bond et al., 1996).

Figure 1: Characteristics of Cosmic Web (credited to the millennium simulation
project (Springel et al., 2005)).
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Our studies focus on detecting the (one-dimensional) cosmic filaments
and (zero-dimensional) cosmic nodes on the filaments from some
astronomical survey data.

In particular,
• we propose a statistical model to characterize the cosmic filaments.
• we also develop a fast algorithm to estimate the filamentary

structures from a set of discrete observations.
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• The filaments has impacts on the stellar properties of their nearby
galaxies, such as stellar mass, spinning orientation, and star
forming rate (Chen et al., 2017; Malavasi et al., 2022).

• The trajectory of cosmic microwave background light can be
distorted due to cosmic filaments, creating the weak lensing effect.

Figure 2: Illustration of the bending trajectory of CMB lights (credit to Siyu He,
Shadab Alam, Wei Chen, and Planck/ESA; see He et al. (2018) for details).
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In astronomical survey data, the positions of observed objects are
recorded as

{(α1, δ1,Z1), ..., (αn, δn,Zn)} ,
where, for i = 1, ...,n,
• αi ∈ [0, 360◦) is the right ascension (RA), i.e., celestial longitude,
• ηi ∈ [−90◦, 90◦] is the declination (DEC), i.e., celestial latitude,
• Zi ∈ (0,∞) is the redshift value.

Figure 3: Illustration of RA and DEC (Image Courtesy of Wikipedia).

Astronomical Survey Data
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Challenge: The filamentary structures are overwhelmingly complex
(Cautun et al., 2013). The existing methods come from two categories:

• 2D method: Partition the Universe into thin redshift slices (Chen
et al., 2015b; Duque et al., 2021).
• 3D method: Convert redshifts into (comoving) distances (Tempel

et al., 2014; Sousbie et al., 2011).

(a) 2D method by slicing the Universe
(credit to Laigle et al. 2018).

(b) 3D method in a cubic region.

Highlight: Our method can easily switch between these two categories!

Some Previous Works of Filament Detection
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The slices (∆z = 0.005) in the survey data are not some flat 2D planes,
but some spherical shells, which have a nonlinear curvature!
• Recall that the locations of astronomical objects in a slice are

recorded by {(αi, δi)}n
i=1 on a celestial sphere.

(a) Planned eBOSS coverage of the
Universe (credit to M. Blanton and SDSS)

(b) BOSS/eBOSS Spectroscopic Footprint
as of DR16 (credit to SDSS)

Drawback of Existing Methods on 2D Slices
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Setup: Suppose that we want to recover the true ring/filament structure
across the North and South pole of a unit sphere given some noisy data
points from it.

Figure 6: Noisy observations (red points) and the underlying true ring/filament
structure (blue line)

Why can’t we ignore the spherical geometry? (I)
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The background contour plots are kernel density estimators on the flat
plane [−90◦, 90◦]× [0◦, 360◦) and unit sphere Ω2 =

{
x ∈ R3 : ||x||2 = 1

}
,

respectively.

(a) Euclidean SCMS Method. (b) Directional SCMS Method.

∗ SCMS: subspace constrained mean shift (Ozertem and Erdogmus, 2011).

Why can’t we ignore the spherical geometry? (III)
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Directional density ridges are generalized local maxima (within some
subspaces) of the underlying density function on the unit hypersphere
Ωq =

{
x ∈ Rq+1 : ||x||2 = 1

}
.

Figure 8: Density ridge (lifted onto the underlying density function; Chen et al.
2015a)

Our Filament Model: Directional Density Ridges

Yikun Zhang Spherical and Conic Cosmic Web Detection 10/23



Under our scenario of detecting cosmic filaments within a spherical
(redshift) slice, q = 2 and d = 1.
• A smooth density function f : Ωq → R. (q = 2 in a spherical slice.)
• Riemannian gradient grad f (x) and Riemannian HessianHf (x).
• Denote Vd(x) =

[
vd+1(x), ...,vq(x)

]
∈ R(q+1)×(q−d) with columns as

the last (q− d) eigenvectors ofHf (x) lying within the tangent space
Tx at x ∈ Ωq.

=⇒

Local modes of f on Ωq:

M≡Mode(f ) =
{

x ∈ Ωq : grad f (x) = 0, λ1(x) < 0
}

Order-d density ridge on Ωq (or directional density ridge) of f :

Rd ≡ Ridge(f ) =
{

x ∈ Ωq : Vd(x)Vd(x)Tgrad f (x) = 0, λd+1(x) < 0
}
.

∗Note that the Riemannian HessianHf (x) has a unit eigenvector x that is orthogonal to Tx
and corresponds to eigenvalue 0.

Formal Definitions of Directional Density Ridges
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Given some discrete observations {X1, ...,Xn} ⊂ Ωq,
1 Density Estimation: We estimate the underlying density function

via the directional kernel density estimator (KDE; Hall et al. 1987;
Bai et al. 1988):

f̂h(x) =
cL,q(h)

n

n∑
i=1

L
(

1− xTXi

h2

)
,

where
• L is a directional kernel, e.g., the von Mises kernel L(r) = e−r,
• h > 0 is the bandwidth, and cL,q(h) is a normalizing constant.

2 Filament Estimation: We propose the directional subspace
constrained mean shift (DirSCMS) algorithm (Zhang and Chen,
2021c), which iterates a sequence

{
x(t)
}∞

t=0 ⊂ Ωq that converges
linearly to the density ridges of directional KDE:

x̂(t+1) ← x̂(t)−V̂d(x̂
(t))V̂d(x̂

(t))T


∑n

i=1 XiL′
(

1−XT
i x̂(t)

h2

)
∑n

i=1 XiL′
(

1−XT
i x̂(t)

h2

)
 with x(t+1) ← x(t+1)

||x(t+1)||2
.

Filament Estimation in Practice
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Step 1 (Slicing the Universe): Partition the redshift range into spherical
slices based on the comoving distance ∆L = 20 Mpc.
• Within each slice, we consider the redshifts of galaxies to be the

same so that the galaxies are located on a sphere.

Cosmic Filament Detection on SDSS-IV Galaxy Data
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Step 2 (Density Estimation): Estimate the galaxy density field via
directional KDE.
• The bandwidth parameter is selected in a data-adaptive approach.

Cosmic Filament Detection on SDSS-IV Galaxy Data
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Step 3 (Denoising): Remove the observations with low-density values.
• We keep at least 80% of the original galaxy data in the slice.

Cosmic Filament Detection on SDSS-IV Galaxy Data
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Step 4 (Laying Down the Mesh Points): We place a set of dense mesh
points on the interested region, which are the initial points of our
DirSCMS iterations.

Cosmic Filament Detection on SDSS-IV Galaxy Data
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Step 5 (Thresholding the Mesh Points): We discard those mesh points
with low-density values and keep 85% of the original mesh points.

Cosmic Filament Detection on SDSS-IV Galaxy Data
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 9: DirSCMS Iterations (Step 0).

Cosmic Filament Detection on SDSS-IV Galaxy Data
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 9: DirSCMS Iterations (Step 3).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 9: DirSCMS Iterations (Step 5).
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 9: DirSCMS Iterations (Step 8).

Cosmic Filament Detection on SDSS-IV Galaxy Data
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Step 6 (DirSCMS Iterations): We iterate our DirSCMS algorithm on
each remaining mesh point until convergence.

Figure 9: DirSCMS Iterations (Final).

Cosmic Filament Detection on SDSS-IV Galaxy Data
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Step 7 (Mode and Knot Estimation): We seek out the local modes and
knots on the filaments as cosmic nodes.

Figure 10: Nodes on the detected filaments.

Cosmic Filament Detection on SDSS-IV Galaxy Data
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Recall that the survey data {(αi, δi,Zi)}n
i=1 ∈ Ω2 × R+ is

directional-linear.
• We consider extending our DirSCMS algorithm to estimate the

cosmic filaments (i.e., density ridges) in a directional-linear product
space (Zhang and Chen, 2021a).
• We adopt the directional-linear KDE (García-Portugués et al., 2015)

with Xi ∈ Ω2 being the Cartesian coordinate of (φi, ηi) for i = 1, ...,n:

f̂h(x, z) =
CL,2(h1)

nh2

n∑
i=1

L
(

1− xTXi

h2
1

)
K
(

z− Zi

h2

)

where L(r) = e−r and K(x) = 1√
2π

e−x2/2 are the kernel functions.

3D Extension of Our DirSCMS Method
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Our directional-linear SCMS algorithm is stabler than its Euclidean
prototype.
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(a) Simulated data points.
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(b) Euclidean SCMS.
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(c) Directional-linear SCMS.

Filament Detection in the Directional-Linear Space (I)
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Figure 12: Cosmic filament detection in the 3D (RA,DEC,Redshift) space with
our directional-linear SCMS algorithm.

Application to SDSS-IV Galaxy Data
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Thank you!
More details can be found in

[1] Y. Zhang and Y.-C. Chen. Kernel Smoothing, Mean Shift, and Their Learning Theory
with Directional Data. Journal of Machine Learning Research, 22(154):1–92, 2021.

https://arxiv.org/abs/2010.13523
[2] Y. Zhang and Y.-C. Chen. The EM Perspective of Directional Mean Shift Algorithm.

2021. https://arxiv.org/abs/2101.10058
[3] Y. Zhang and Y.-C. Chen. Linear Convergence of the Subspace Constrained Mean Shift
Algorithm: From Euclidean to Directional Data. 2021. https://arxiv.org/abs/2104.14977

[4] Y. Zhang and Y.-C. Chen. Mode and Ridge Estimation in Euclidean and Directional
Product Spaces: A Mean Shift Approach. 2021. https://arxiv.org/abs/2110.08505
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Assume tentatively that the directional function f is well-defined and
smooth in Rq+1 \ {0} (or at least in an open neighborhood U ⊃ Ωq).

• Riemannian gradient grad f (x) on Ωq:

grad f (x) =
(
Iq+1 − xxT)∇f (x),

where Iq+1 is the identity matrix in R(q+1)×(q+1).

• Riemannian HessianHf (x) on Ωq (Zhang and Chen, 2021b):

Hf (x) = (Iq+1 − xxT)
[
∇∇f (x)−∇f (x)Tx · Iq+1

]
(Iq+1 − xxT).

Here, Iq+1 is the identity matrix in R(q+1)×(q+1), while ∇f (x) and∇∇f (x)
are total gradient and Hessian in Rq+1.

Riemannian Gradient and Hessian on Ωq
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Under the von Mises kernel L(r) = e−r,

• directional KDE f̂h(x) =
cL,q(h)

n

n∑
i=1

L
(

1−xTXi
h2

)
becomes

• a mixture of von Mises-Fisher densities:

f̂h(x) =
1
n

n∑
i=1

fvMF

(
x; Xi,

1
h2

)

=
1

n(2π)
q+1

2 I q−1
2

(1/h2)hq−1

n∑
i=1

exp

(
xTXi

h2

)
.

An Example of the Directional Kernel

Yikun Zhang Spherical and Conic Cosmic Web Detection 5/10



Input:
• A directional data sample X1, ...,Xn ∼ f (x) on Ωq

• The order d of the directional ridge, smoothing bandwidth h > 0,
and tolerance level ε > 0.

• A suitable meshMD ⊂ Ωq of initial points.

Step 1: Compute the directional KDE f̂h(x) =
cL,q(h)

n

n∑
i=1

L
(

1−xTXi
h2

)
on the

meshMD.

Step 2: For each x̂(0) ∈MD, iterate the following DirSCMS update until
convergence:

while
∣∣∣∣∣∣∣∣ n∑

i=1
V̂d(x̂(0))V̂d(x̂(0))TXi · L′

(
1−XT

i x̂(0)

h2

)∣∣∣∣∣∣∣∣
2

> ε do:

Detailed Procedures of DirSCMS Algorithm I
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• Step 2-1: Compute the scaled version of the estimated Hessian
matrix as:

nh2

cL,q(h)
Hf̂h(x̂(t)) =

[
Iq+1 − x̂(t)

(
x̂(t)
)T
][

1
h2

n∑
i=1

XiXT
i · L′′

(
1− XT

i x̂(t)

h2

)

+

n∑
i=1

XT
i x̂(t)Iq+1 · L′

(
1− XT

i x̂(t)

h2

)][
Iq+1 − x̂(t)

(
x̂(t)
)T
]
.

• Step 2-2: Perform the spectral decomposition on nh2

cL,q(h)Hf̂h
(
x̂(t)
)

and

compute V̂d(x̂(t)) =
[
vd+1(x̂(t)), ...,vq(x̂(t))

]
, whose columns are

orthonormal eigenvectors corresponding to the smallest q− d
eigenvalues inside the tangent space Tx̂(t) .
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• Step 2-3: Update

x̂(t+1) ← x̂(t) − V̂d(x̂(t))V̂d(x̂(t))T

∑n
i=1 XiL′

(
1−XT

i x̂(t)

h2

)
∑n

i=1 XiL′
(

1−XT
i x̂(t)

h2

)
 .

• Step 2-4: Standardize x̂(t+1) as x̂(t+1) ← x̂(t+1)

||̂x(t+1)||2
.

Output: An estimated directional d-ridge R̂d represented by the
collection of resulting points.
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• Recall that the directional-linear KDE at (x, z) ∈ Ω2 × R is defined as:

f̂h(x, z) =
CL,2(h1)

nh2

n∑
i=1

L
(

1− xTXi

h2
1

)
K
(

z− Zi

h2

)
.

• Directional-linear mean shift iteration:(
x(t+1), z(t+1)

)T
← Ξ(x(t), z(t)) +

(
x(t), z(t)

)T

=



n∑
i=1

Xi·L′
(

1−XT
i x(t)

h1

)
K
(

z(t)−Zi
h2

)
n∑

i=1
L′
(

1−XT
i x(t)

h1

)
K
(

z(t)−Zi
h2

)
n∑

i=1
Zi·L

(
1−XT

i x(t)

h1

)
K

(∣∣∣∣∣∣∣∣ z(t)−Zi
h2

∣∣∣∣∣∣∣∣2
2

)
n∑

i=1
L
(

1−XT
i x(t)

h1

)
K

(∣∣∣∣∣∣∣∣ z(t)−Zi
h2

∣∣∣∣∣∣∣∣2
2

)


with an extra standardization x(t+1) ← x(t+1)

||x(t+1)||2
.
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• Directional-linear SCMS algorithm iteration at y(t) =
(
x(t+1), z(t+1)

)T
:

y(t) ← y(t) + η · V̂d(y(t))V̂d(y(t))TH−1Ξ(y(t)),

where H = Diag(h2
1, h

2
1, h

2
2) ∈ R3×3 is a diagonal matrix and

Ξ(y(t)) = Ξ(x(t), z(t)) =



n∑
i=1

Xi·L′
(

1−XT
i x(t)

h1

)
K
(

z(t)−Zi
h2

)
n∑

i=1
L′
(

1−XT
i x(t)

h1

)
K
(

z(t)−Zi
h2

) − x(t)

n∑
i=1

Zi·L
(

1−XT
i x(t)

h1

)
K

(∣∣∣∣∣∣∣∣ z(t)−Zi
h2

∣∣∣∣∣∣∣∣2
2

)
n∑

i=1
L
(

1−XT
i x(t)

h1

)
K

(∣∣∣∣∣∣∣∣ z(t)−Zi
h2

∣∣∣∣∣∣∣∣2
2

) − z(t)


.

Here, we design a theoretically motivated and empirically effective step
size as η = min {h1h2, 1}.

∗ Notes: A naive generalization of SCMS algorithm y(t+1) ← y(t) + V̂d(y(t))V̂d(y(t))TΞ(y(t)) plus
standardization as with pure Euclidean/directional data does not work (Zhang and Chen, 2021a)!
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