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Aim for today

To provide an introductory overview of the current computational tools used 
in scRNA-seq, with an emphasis on breadth rather than depth.

Please feel free to ask questions!
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Today’s presentation

• 1) Introduction to single-cell RNA-sequencing (scRNA-seq)
• Motivation
• Technology

• 2) scRNA-seq of healthy tonsillar B cells
• Motivation
• Overview of common analysis practices
• UMAP, t-SNE, and trajectory inference
• Trajectory inference in B cell maturation

• 3) CITE-seq of peripheral blood cells in MS before/after treatment
• Multimodal data
• Integration of multimodal data

• Fin) Further reading and useful references
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Introduction to scRNA-seq
Motivation
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Why do we use scRNA-seq?

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)
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Why do we use scRNA-seq?

RNA ultimately provides one
approach* at gaining insight into
cellular function and processes
*whether this approach is sufficient to show insight 
depends on the context… and the reviewer 😉

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)
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Why do we use scRNA-seq?

FACSisolate	cells isolate	RNA RNA-seq

sample	1 sample	2

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)
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Why do we use scRNA-seq?

FACSisolate	cells isolate	RNA RNA-seq

isolate	cells the harsh reality

sample	1 sample	2

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)
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Why do we use scRNA-seq?

FACSisolate	cells isolate	RNA RNA-seq

isolate	cells the harsh reality

sample	1 sample	2

sample	1 sample	2 sample	3 sample	4 sample	5 sample	N

…isolate	cells ???

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)
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Introduction to scRNA-seq
Technology
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How do we perform scRNA-seq?

“A	single	cell	is	manually	picked	under	a	
microscope	and	lysed…”

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)
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How do we perform scRNA-seq?

“A	single	cell	is	manually	picked	under	a	
microscope	and	lysed…”

one	neuron,	Southern	blot

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)
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How do we perform scRNA-seq?

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)
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How do we perform scRNA-seq?

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)
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How do we perform scRNA-seq?

Initially and now: re-explore difficult to study systems with these 
tools and build ”atlases” or “landscapes” of these tissues

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)



16

How do we perform scRNA-seq?

Emerging: leverage these tools for more traditional 
“hypothesis-driven” questions

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)



17

How do we perform scRNA-seq?

Datasets	continue	to	increase	in	size	(more	cells	detected	and	better	sensitivity)…	
and	a	parallel	increase	in	tool	development	to	make	sense	of	these	data

Part 1: Introduction to single-cell RNA-sequencing (scRNA-seq)

Figure	credit:	Valentine	Svennson and	Lior Pachter

1.3	million	murine	brain	cells
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scRNA-seq of healthy tonsillar B cells
Motivation
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Tonsillar B cells: an atlas-type approach

Part 2: scRNA-seq of healthy tonsillar B cells

Naïve B cells

Memory B cells
Plasma cells

Lymph node
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Tonsillar B cells: an atlas-type approach

Part 2: scRNA-seq of healthy tonsillar B cells

Tonsil (~ lymph node)
from 3 healthy donors

FACS

B cells
10X Chromium

(recovered 43K cells)
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scRNA-seq of healthy tonsillar B cells
Overview of common analysis practices
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Overview of data processing

Part 2: scRNA-seq of healthy tonsillar B cells

Number of unique mRNA species 
detected per cell (median = 1,066)

Number of RNA molecules 
detected per cell (median = 2,860)

An example of one tonsil’s dataset (8,828 cells)

Cell	
1

Cell	
2

Cell
3

Cell	
4

…	 Cell	
N

Gene	1 10 0 10 0

Gene	2 0 0 39 0

Gene	3 87 11 4 0

Gene	4 0 0 0 41

…

Gene	16,000

Result is a relatively sparse matrix
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cell 
matrix
(n x p)

n = cells
p = genes

variable feature
selection (x = 3000)

center
& scale

Single cell 
matrix
(n x p)

scale by library size,
log1p transform Single cell 

matrix
(n x 3000)

Scaled single 
cell matrix
(n x 3000)

PCA

Single cells 
in PC space

(n x NPCs)

Typically, selection using variance stabilizing 
transformation: LOESS. log(var) ~ log(mean) and 
standardize variance

Most common workflow
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cell 
matrix
(n x p)

n = cells
p = genes

variable feature
selection (x = 3000)

center
& scale

Single cell 
matrix
(n x p)

scale by library size,
log1p transform Single cell 

matrix
(n x 3000)

Scaled single 
cell matrix
(n x 3000)

sctransform
model counts using regularized 

negative binomial and use Pearson 
residuals as scaled values Scaled single 

cell matrix
(n x 3000)

PCA

Single cells 
in PC space

(n x NPCs)

PCA

Single cells 
in PC space

(n x NPCs)

see also
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cell 
matrix
(n x p)

n = cells
p = genes

variable feature
selection (x = 3000)

center
& scale

Single cell 
matrix
(n x p)

scale by library size,
log1p transform Single cell 

matrix
(n x 3000)

Scaled single 
cell matrix
(n x 3000)

sctransform
model counts using regularized 

negative binomial and use Pearson 
residuals as scaled values Scaled single 

cell matrix
(n x 3000)

PCA

Single cells 
in PC space

(n x NPCs)

PCA

Single cells 
in PC space

(n x NPCs)

Single cells 
in latent 
space
(n x N)

scVI
Bayesian variational inference model
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cell 
matrix
(n x p)

n = cells
p = genes

variable feature
selection (x = 3000)

center
& scale

Single cell 
matrix
(n x p)

scale by library size,
log1p transform Single cell 

matrix
(n x 3000)

Scaled single 
cell matrix
(n x 3000)

sctransform
model counts using regularized 

negative binomial and use Pearson 
residuals as scaled values Scaled single 

cell matrix
(n x 3000)

PCA

Single cells 
in PC space

(n x NPCs)

PCA

Single cells 
in PC space

(n x NPCs)

Single cells 
in latent 
space
(n x N)

scVI
Bayesian variational inference model
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cells 
in PC space

(n x NPCs)
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cells 
in PC space

(n x NPCs)

Single cell kNN
(n x n)

(if adjacency matrix)

k-nearest neighbors 
construction

(typically k = 20 to 40)

(approximate NN)
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cells 
in PC space

(n x NPCs)

Single cell kNN
(n x n)

(if adjacency matrix)

k-nearest neighbors 
construction

(typically k = 20 to 40)

(approximate NN)

2-dimensional visualizations (UMAP can do 3+)

UMAP t-SNE
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cells 
in PC space

(n x NPCs)

Single cell kNN
(n x n)

(if adjacency matrix)

k-nearest neighbors 
construction

(typically k = 20 to 40)

(approximate NN)

Graph-based 
clustering methods 

using an SNN 
(Louvain, Leiden)

2-dimensional visualizations (UMAP can do 3+)

UMAP t-SNE

Identify genes 
enriched in clusters

Annotate clusters with 
determined identities

This step requires knowledge of 
the literature of your system and 

manual curation.
Supervised classifiers are 
growing in use, however.

Louvain and Leiden modularity 
clustering are almost exclusively 
used in the single-cell literature
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cells 
in PC space

(n x NPCs)

Single cell kNN
(n x n)

(if adjacency matrix)

k-nearest neighbors 
construction

(typically k = 20 to 40)

(approximate NN)

Graph-based 
clustering methods 

using an SNN 
(Louvain, Leiden)

2-dimensional visualizations (UMAP can do 3+)

UMAP t-SNE

Identify genes 
enriched in clusters

Annotate clusters with 
determined identities

A. Publishable atlas-level 
annotation resource

B. Compositional or 
differential expression 
analyses for condition-

based experiments

C. Network analyses: 
cell-cell and gene-gene 

interactions network 
analysis

D. Trajectory inference 
and pseudotemporal

analyses
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Data processing overview

Part 2: scRNA-seq of healthy tonsillar B cells

Single cells 
in PC space

(n x NPCs)

Single cell kNN
(n x n)

(if adjacency matrix)

k-nearest neighbors 
construction

(typically k = 20 to 40)

(approximate NN)

Graph-based 
clustering methods 

using an SNN 
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2-dimensional visualizations (UMAP can do 3+)
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annotation resource

B. Compositional or 
differential expression 
analyses for condition-

based experiments

C. Network analyses: 
cell-cell and gene-gene 

interactions network 
analysis

D. Trajectory inference 
and pseudotemporal
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scRNA-seq of healthy tonsillar B cells
UMAP, t-SNE, and trajectory inference
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

UMAP and t-SNE are traditionally used as visualization tools …
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

UMAP in particular has gained most 
traction in scRNA-seq field

Torus Sphere

Align UMAP over time

https://umap-learn.readthedocs.io/en/latest/index.html
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

These reductions are largely for visual use…
with the exception of their utility in trajectory inference methods

Key assumption: chosen dimensionality reduction (UMAP, t-SNE, whatever you use) captures 
continuum of cell states across paths of maturation, transition, or development
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

Stem cell

Cell fate A

Cell fate B

PCA, UMAP, t-SNE, ICA, DDRTree,
PHATE, Diffusion maps, etc…



38

Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

PCA, UMAP, t-SNE, ICA, DDRTree,
PHATE, Diffusion maps, etc…

As of 2019, 70+ TI methods developed,
with differing performance…
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

Use the trajectory as a “pseudo-time” axis and project cells to this time axis:
each cell will now have an associated “pseudotime” (and trajectory membership)

pseudotime

pseudotime

G
en

e 
A 

ex
pr

es
si

on

Manual	assignment	to	time	=	0
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

Unlike	previous	analyses,	very	little	consensus	within	the	field	for	choosing	a	single	method
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

IDENTIFIED TRAJECTORIES DO NOT ALWAYS IMPLY CELL LINEAGE RELATIONSHIPS!

Wilk et al, 2020, Nature Medicine (Figure 4a)

Developing neutrophils

Plasma cells

“UMAP embeddings may reflect the expression of similar genes but not necessarily direct 
cell lineage relationships”

(this should be obvious but there exist plenty of examples of this in the literature  🤦)
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scRNA-seq of healthy tonsillar B cells
Trajectory inference in B cell maturation
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

Naïve B cells

Memory B cells
Plasma cells
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells
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Clusters and dimensional reduction in tonsillar B cell dataset

Part 2: scRNA-seq of healthy tonsillar B cells

GC Pre-plasma cell
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CITE-seq of peripheral blood cells in MS 
before/after treatment
Multimodal data
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Why do we use scRNA-seq?

RNA ultimately provides one approach at
gaining insight into cellular function and
processes

Part 3: CITE-seq of peripheral blood cells in MS before/after treatment

But we know that cell function is defined
by more than just RNA…
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Multimodal data analyses (slide already dated…)

Part 3: CITE-seq of peripheral blood cells in MS before/after treatment
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CITE-seq perhaps most commonly used (and commercially 
available) method

Part 3: CITE-seq of peripheral blood cells in MS before/after treatment
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What are the advantages?

Part 3: CITE-seq of peripheral blood cells in MS before/after treatment

4	populations	poorly	captured	using	solely	RNA	
information…

These	4	CD4	T	cell	populations	functionally	
different	based	on	decades	of	study

CD45RA

CCR7
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What are the advantages?

Part 3: CITE-seq of peripheral blood cells in MS before/after treatment

These	4	CD4	T	cell	populations	functionally	
different	based	on	decades	of	study

Adding	surface	protein	expression	information	
helps	in	population	discrimination.

CD45RA

CCR7
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Building in an additional data modality into our analysis

RNA kNN Protein kNN

“weighted” kNN

Single cell matrix
(n x m)

Single cell matrix
(n x d)

n = number of cells
m = number of genes
d = number of protein markers

Part 3: CITE-seq of peripheral blood cells in MS before/after treatment
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Further reading and useful references
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References

• Software packages
• Seurat (R): https://satijalab.org/seurat
• scanpy (python): https://scanpy.readthedocs.io/en/stable/
• scVi (python): https://www.scvi-tools.org/en/stable/

• Single cell technologies
• Droplet-based 10X profiling (RNA, surface protein, immune repertoire, perturbation) 

https://www.10xgenomics.com/products/single-cell-gene-expression
• SeqWell http://shaleklab.com/resource/seq-well/
• NYGC: https://www.nygenome.org/labs/technology-innovation-lab/
• Combinatorial indexing: https://cole-trapnell-lab.github.io/projects/sc-rna/

• Preprocessing techniques
• Doublet detection with scrublet (Wolock SL et al. https://www.cell.com/cell-

systems/pdfExtended/S2405-4712(18)30474-5 )
• Background RNA with SoupX (Young MD et al. 

https://academic.oup.com/gigascience/article/9/12/giaa151/6049831)
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References
• Count data transformation

• sctransform (part of Seurat now, Hafemeister et al. 
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1874-1 )

• GLM-PCA (Townes FW et al. 
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1861-6 )

• Data integration (aka batch correction)
• Seurat v3 (Stuart T et al. https://www.cell.com/cell/pdf/S0092-8674(19)30559-8.pdf )
• Harmony (in Seurat now, Korsunsky I et al. https://www.nature.com/articles/s41592-019-

0619-0 )
• bbKNN (in scanpy now, Polanski K et al. 

https://academic.oup.com/bioinformatics/article/36/3/964/5545955 )
• Clustering

• Louvain & Leiden modularity detection 
(http://bioconductor.org/books/release/OSCA/clustering.html#clustering-graph )

• Machine learning methods
• scVI
• DESC (Li X et al. https://www.nature.com/articles/s41467-020-15851-3 )
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References
• Data visualization

• UMAP (in Seurat and scanpy now, also at https://umap-learn.readthedocs.io/en/latest/
and R https://cran.r-project.org/web/packages/uwot/index.html )

• t-SNE (in Seurat)
• PHATE (Moon KR et al. https://www.nature.com/articles/s41587-019-0336-3 )
• ForceAtlas2 (in scanpy)

• Trajectory inference
• Slingshot (Street K et al. 

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4772-0 )
• PAGA (Wolf FA et al. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-

019-1663-x )
• RNA velocity (part of scVelo package in python, most recent pub at Bergen V et al. 

https://www.nature.com/articles/s41587-020-0591-3 )
• Multi-modal data anlysis

• Weighted nearest neighbors (in Seurat now, Hao Y et al. 
https://www.biorxiv.org/content/10.1101/2020.10.12.335331v1.full )

• totalVI (part of scVI, Gayoso A et al. 
https://www.biorxiv.org/content/10.1101/2020.05.08.083337v2 )
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References

• Useful reference dictionary: http://bioconductor.org/books/release/OSCA/
Most	publications	have	publicly	available	data	you	can	use!!!	



59

On cyclical structures, RNA velocity, and trajectory inference

• Gene expression dynamics of cyclical structures in dimension reductions:
• See Figure 2 of https://www.nature.com/articles/s41590-018-0181-4

• Other packages exist amenable to or specific to cyclical analyses:
• See Figure 2 of https://www.nature.com/articles/s41587-019-0071-9

• Incorporation of RNA velocity into cell cycle and visualization
• See preprint at https://twitter.com/lylaatta/status/1355161798845095936

• RNA velocity pre-processing matters
• https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008585

• Latest RNA velocity publication
• https://www.nature.com/articles/s41587-020-0591-3
• See scVelo package: https://scvelo.readthedocs.io/

• Framework for gene expression analyses in trajectory inference
• See tradeSeq package: https://www.nature.com/articles/s41467-020-14766-3
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Thanks!


